{"title":"Adsorption of butyric acid and butyl acetate on arsenaluminane nanosheets based on first-principles study","authors":"M. S. Jyothi, V. Nagarajan, R. Chandiramouli","doi":"10.1007/s10450-024-00537-9","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, there is a significant interest among researchers in elemental monolayer materials owing to their exceptional sensitivity, selectivity, and stability in detecting air pollutants. In the proposed study, the structural stability of bare arsenaluminane is validated through cohesive energy analysis. It is used to adsorb the sewer gas contaminants, which are butyric acid and butyl acetate. Subsequently, the electronic properties of arsenaluminane are examined using band structure analysis and projected density of states spectra. The calculated band gap of arsenaluminane is 1.408 eV (predicted using hybrid-GGA/B3LYP), indicating its semiconducting state. Notably, the adsorption characteristics of butyric acid and butyl acetate molecules on arsenaluminane were investigated by analysing adsorption energy, relative band gap changes, and Mulliken charge transfer. Specifically, the calculated adsorption energies fall within the physisorption regime and the Mulliken charge transfer ranges from 0.084 e to 0.598 e, suggesting that arsenaluminane behaves as a promising chemical sensor for detecting sewer gas molecules.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 8","pages":"2005 - 2016"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00537-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, there is a significant interest among researchers in elemental monolayer materials owing to their exceptional sensitivity, selectivity, and stability in detecting air pollutants. In the proposed study, the structural stability of bare arsenaluminane is validated through cohesive energy analysis. It is used to adsorb the sewer gas contaminants, which are butyric acid and butyl acetate. Subsequently, the electronic properties of arsenaluminane are examined using band structure analysis and projected density of states spectra. The calculated band gap of arsenaluminane is 1.408 eV (predicted using hybrid-GGA/B3LYP), indicating its semiconducting state. Notably, the adsorption characteristics of butyric acid and butyl acetate molecules on arsenaluminane were investigated by analysing adsorption energy, relative band gap changes, and Mulliken charge transfer. Specifically, the calculated adsorption energies fall within the physisorption regime and the Mulliken charge transfer ranges from 0.084 e to 0.598 e, suggesting that arsenaluminane behaves as a promising chemical sensor for detecting sewer gas molecules.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.