Behavior of 1-octanol and biphasic 1-octanol/water droplets in a digital microfluidic system

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY Micro and Nano Systems Letters Pub Date : 2024-11-08 DOI:10.1186/s40486-024-00214-0
Jan Wagner, Oliver Fiukowski, Roman Nebesnyi, Sven Ingebrandt, Andrij Pich, Uwe Schnakenberg
{"title":"Behavior of 1-octanol and biphasic 1-octanol/water droplets in a digital microfluidic system","authors":"Jan Wagner,&nbsp;Oliver Fiukowski,&nbsp;Roman Nebesnyi,&nbsp;Sven Ingebrandt,&nbsp;Andrij Pich,&nbsp;Uwe Schnakenberg","doi":"10.1186/s40486-024-00214-0","DOIUrl":null,"url":null,"abstract":"<div><p>Digital microfluidic systems, based on the electrowetting-on-dielectric mechanism, allow the manipulation, dispensing, merging, splitting, and mixing of micro- to nanoliter droplets on hydrophobic surfaces by applying voltages to an array of planar electrodes. The manipulation of both a non-aqueous and an aqueous phase droplet in a single experiment has gained considerable interest. This study focuses on characterizing the dispensing and dosing of 1-octanol droplets, merging with a water droplet, and phase separation with minimal residue formation by shearing off the biphasic droplet at a tear-off edge of a hydrophilic well, using optimized actuation parameters. The volume of the 1-octanol droplet dispensed from an L-junction reservoir design increased with increasing dispensing speed. Dispensing can only occur within a certain reservoir volume range. Under identical conditions, 1-octanol droplets could be dispensed with volume variations of less than 0.55%, and manipulated at a maximum velocity of 5.6 mm/s when the frequency of the applied AC voltage was about 200 Hz. At the tear-off edge of the hydrophilic well, the 1-octanol residue on the water droplet was reduced to less than 0.15% of the original 1-octanol droplet volume. The results will be used for future applications, such as for the precise quantitative characterization of the reaction kinetics of complex parallel or sequential interfacial catalytic reactions, for the study of self-assembly processes or for liquid–liquid extractions at the 1-octanol–water interface.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"12 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00214-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-024-00214-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Digital microfluidic systems, based on the electrowetting-on-dielectric mechanism, allow the manipulation, dispensing, merging, splitting, and mixing of micro- to nanoliter droplets on hydrophobic surfaces by applying voltages to an array of planar electrodes. The manipulation of both a non-aqueous and an aqueous phase droplet in a single experiment has gained considerable interest. This study focuses on characterizing the dispensing and dosing of 1-octanol droplets, merging with a water droplet, and phase separation with minimal residue formation by shearing off the biphasic droplet at a tear-off edge of a hydrophilic well, using optimized actuation parameters. The volume of the 1-octanol droplet dispensed from an L-junction reservoir design increased with increasing dispensing speed. Dispensing can only occur within a certain reservoir volume range. Under identical conditions, 1-octanol droplets could be dispensed with volume variations of less than 0.55%, and manipulated at a maximum velocity of 5.6 mm/s when the frequency of the applied AC voltage was about 200 Hz. At the tear-off edge of the hydrophilic well, the 1-octanol residue on the water droplet was reduced to less than 0.15% of the original 1-octanol droplet volume. The results will be used for future applications, such as for the precise quantitative characterization of the reaction kinetics of complex parallel or sequential interfacial catalytic reactions, for the study of self-assembly processes or for liquid–liquid extractions at the 1-octanol–water interface.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字微流体系统中的 1-辛醇和 1-辛醇/水双相液滴的行为
基于电介质电润湿机制的数字微流控系统可通过在平面电极阵列上施加电压,在疏水表面对微升至纳升液滴进行操作、分配、合并、分裂和混合。在一次实验中同时操纵非水相和水相液滴已引起人们的极大兴趣。本研究的重点是利用优化的致动参数,通过在亲水井的撕裂边缘剪切双相液滴,确定 1-辛醇液滴的分配和定量、与水滴的合并以及相分离的特性,同时尽量减少残留物的形成。从 L 型连接储层设计中分配的 1-辛醇液滴的体积随着分配速度的增加而增大。喷点只能在一定的储液器体积范围内进行。在相同条件下,当施加的交流电压频率约为 200 赫兹时,1-辛醇液滴的体积变化小于 0.55%,并能以 5.6 毫米/秒的最大速度进行操作。在亲水井的撕离边缘,水滴上的 1-辛醇残留物减少到原始 1-辛醇水滴体积的 0.15%以下。这些结果将用于未来的应用,如复杂的平行或连续界面催化反应动力学的精确定量表征、自组装过程研究或 1-辛醇-水界面的液-液萃取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
期刊最新文献
ZnO-adipic acid composites as phase change material for latent heat thermal energy storage systems Behavior of 1-octanol and biphasic 1-octanol/water droplets in a digital microfluidic system Investigating non fluorescence nanoparticle transport in Matrigel-filled microfluidic devices using synchrotron X-ray scattering Flexible sensing probe for the simultaneous monitoring of neurotransmitters imbalance Effect of pure (ligand-free) nanoparticles of magnetite in sodium chloride matrix on hematological indicators, blood gases, electrolytes and serum iron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1