{"title":"Slip hardening behavior of bundled steel fibers in ultra-high performance concrete","authors":"Mandip Dahal, Kay Wille","doi":"10.1016/j.cemconcomp.2024.105844","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel steel fiber arrangement, termed “bundled fibers,” where multiple high-strength steel wires are twisted into short, discontinuous fibers. The bond behavior of these bundled fibers in ultra-high performance concrete (UHPC) was evaluated through single-fiber pullout tests. Four variations of bundled fibers, consisting of two to five wires, were tested across three embedment lengths (3.3 mm, 4.9 mm, and 6.5 mm). Results indicate that increasing embedment length and bundling more wires enhance maximum pullout load, fiber stress, pullout energy, and bond strength, although slip capacity decreases with more wires. Compared to equivalent numbers of straight fibers, bundled fibers demonstrated superior performance in all pullout parameters and outperformed five common steel fiber geometries (straight, striated, wavy, hooked, twisted) in bond strength and slip capacity. A new parameter introduced to quantify slip hardening addresses a gap in the literature, with bundled fibers showing a higher degree of slip hardening due to torsion-induced frictional bonding. Additionally, bundled fibers reduce fiber agglomeration, highlighting their potential for developing high energy-absorbing UHPC.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"155 ","pages":"Article 105844"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004177","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel steel fiber arrangement, termed “bundled fibers,” where multiple high-strength steel wires are twisted into short, discontinuous fibers. The bond behavior of these bundled fibers in ultra-high performance concrete (UHPC) was evaluated through single-fiber pullout tests. Four variations of bundled fibers, consisting of two to five wires, were tested across three embedment lengths (3.3 mm, 4.9 mm, and 6.5 mm). Results indicate that increasing embedment length and bundling more wires enhance maximum pullout load, fiber stress, pullout energy, and bond strength, although slip capacity decreases with more wires. Compared to equivalent numbers of straight fibers, bundled fibers demonstrated superior performance in all pullout parameters and outperformed five common steel fiber geometries (straight, striated, wavy, hooked, twisted) in bond strength and slip capacity. A new parameter introduced to quantify slip hardening addresses a gap in the literature, with bundled fibers showing a higher degree of slip hardening due to torsion-induced frictional bonding. Additionally, bundled fibers reduce fiber agglomeration, highlighting their potential for developing high energy-absorbing UHPC.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.