Metal-organic frameworks for atmospheric water extraction: Kinetic analysis and stochastic programming under climate variability

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Cleaner Production Pub Date : 2024-11-09 DOI:10.1016/j.jclepro.2024.144187
Jinsu Kim , Shubham Jamdade , Yanhui Yuan , Matthew J. Realff
{"title":"Metal-organic frameworks for atmospheric water extraction: Kinetic analysis and stochastic programming under climate variability","authors":"Jinsu Kim ,&nbsp;Shubham Jamdade ,&nbsp;Yanhui Yuan ,&nbsp;Matthew J. Realff","doi":"10.1016/j.jclepro.2024.144187","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing demands for sustainable and distributed freshwater sources drive the exploration of water extraction from ambient air. This study presents a comprehensive computational approach for optimizing unit harvesting cost of the adsorption-based atmospheric water extraction (AWE) systems. There are three objectives (i) assessing the impact of climate variability: utilizing <em>k</em>-means clustering, utilizing climate data in different regions to explore the effects of ambient conditions in dry-hot (California), humid-hot (Florida), and dry-cold (Wyoming) regions, resulting in a preference for harvesting under humid-hot conditions. (ii) performing kinetic analysis: The derived kinetic model connects climate variability to operational time and regeneration temperature, critical process design variables. (iii) assessing adsorption materials: three materials (MIL-100 (Fe), MOF-303, and ZJNU-30) were assessed revealing the impact of variations in maximum capacity and isotherm shape on performance and cost. The optimization algorithm uses a two stage stochastic programming approach to account for climate variability and enables an optimization that balances the capital and operating costs across a range of temperature and humidity conditions.</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"482 ","pages":"Article 144187"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652624036369","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing demands for sustainable and distributed freshwater sources drive the exploration of water extraction from ambient air. This study presents a comprehensive computational approach for optimizing unit harvesting cost of the adsorption-based atmospheric water extraction (AWE) systems. There are three objectives (i) assessing the impact of climate variability: utilizing k-means clustering, utilizing climate data in different regions to explore the effects of ambient conditions in dry-hot (California), humid-hot (Florida), and dry-cold (Wyoming) regions, resulting in a preference for harvesting under humid-hot conditions. (ii) performing kinetic analysis: The derived kinetic model connects climate variability to operational time and regeneration temperature, critical process design variables. (iii) assessing adsorption materials: three materials (MIL-100 (Fe), MOF-303, and ZJNU-30) were assessed revealing the impact of variations in maximum capacity and isotherm shape on performance and cost. The optimization algorithm uses a two stage stochastic programming approach to account for climate variability and enables an optimization that balances the capital and operating costs across a range of temperature and humidity conditions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大气水提取的金属有机框架:气候多变性下的动力学分析和随机编程
对可持续和分布式淡水资源日益增长的需求推动了对从环境空气中提取水的探索。本研究提出了一种综合计算方法,用于优化基于吸附的大气取水(AWE)系统的单位取水成本。研究有三个目标 (i) 评估气候多变性的影响:利用 k-means 聚类,利用不同地区的气候数据,探索干热(加利福尼亚州)、湿热(佛罗里达州)和干冷(怀俄明州)地区环境条件的影响,从而得出在湿热条件下采水的偏好。(ii) 进行动力学分析:推导出的动力学模型将气候变异与操作时间和再生温度这些关键的工艺设计变量联系起来。(iii) 评估吸附材料:评估了三种材料(MIL-100(铁)、MOF-303 和 ZJNU-30),揭示了最大容量和等温线形状的变化对性能和成本的影响。优化算法采用了两阶段随机编程方法,以考虑气候的可变性,并实现了在一系列温度和湿度条件下平衡资本和运营成本的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
期刊最新文献
Innovation of Poly(ionic liquid)-Stabilized TiO2 for Membrane-based Dye Waste Remediation Quantifying the life cycle emissions of hybrid structures with advanced bio- and conventional materialization for low-embodied carbon urban densification of the Amsterdam Metropolitan Area Thermodynamic characteristics of nitrifiers reveal the potential NOB inhibition strategies at low temperatures Nitrogen and phosphorus metabolism together lead to a continuous increase in the environmental pollution risk in Minnan-Triangle cities Low-carbon consumption in extreme heat in Eastern China: climate change anxiety as a facilitator or inhibitor?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1