Selective Self‐Assembly of Atomically Dispersed Iron and Cobalt Dual Atom Catalyst on Anisotropic Mesoporous Carbon Particles for High Performance Seawater Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-09 DOI:10.1002/adfm.202414749
Dongyoon Woo, Jioh Kim, Liangliang Xu, Jinkyu Park, Cheol‐Young Park, Seung Yeop Yi, Seongbeen Kim, Hyunwoo Jun, Seongseop Kim, Jinwoo Lee
{"title":"Selective Self‐Assembly of Atomically Dispersed Iron and Cobalt Dual Atom Catalyst on Anisotropic Mesoporous Carbon Particles for High Performance Seawater Batteries","authors":"Dongyoon Woo, Jioh Kim, Liangliang Xu, Jinkyu Park, Cheol‐Young Park, Seung Yeop Yi, Seongbeen Kim, Hyunwoo Jun, Seongseop Kim, Jinwoo Lee","doi":"10.1002/adfm.202414749","DOIUrl":null,"url":null,"abstract":"Na‐seawater batteries (SWBs) are environmentally friendly energy storage system that utilizes abundant seawater as an electrolyte alternative to conventional distilled water‐based and organic electrolytes. To achieve high energy efficiency in Na‐SWBs, it is necessary to enhance the activity of bifunctional oxygen electrocatalysts. In this study, an atomically dispersed iron and cobalt dual‐atom nitrogen‐doped lens‐shaped mesoporous carbon (FeCo‐LMC) particles is synthesized as a SWB cathode material using the spinodal decomposition of the polymer blend and selective precursor positioning. The well‐aligned mesoporous structure and synergetic effect of the dual‐atom site realize FeCo‐LMC as a comparable bifunctional oxygen catalyst with the lowest overpotential difference (E<jats:sub>OER</jats:sub>−E<jats:sub>ORR</jats:sub>) among the other catalysts with natural seawater electrolyte. When applied to the SWB system, the FeCo‐LMC shows a highly improved charge/discharge performance compared to Pt/C and a stable cycling performance for 200 h. Density functional theory calculations reveal the enhanced oxygen catalytic activity of FeCo‐LMC owing to electron delocalization and d‐band center adjustment of FeN<jats:sub>4</jats:sub>–CoN<jats:sub>4</jats:sub> structure.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414749","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Na‐seawater batteries (SWBs) are environmentally friendly energy storage system that utilizes abundant seawater as an electrolyte alternative to conventional distilled water‐based and organic electrolytes. To achieve high energy efficiency in Na‐SWBs, it is necessary to enhance the activity of bifunctional oxygen electrocatalysts. In this study, an atomically dispersed iron and cobalt dual‐atom nitrogen‐doped lens‐shaped mesoporous carbon (FeCo‐LMC) particles is synthesized as a SWB cathode material using the spinodal decomposition of the polymer blend and selective precursor positioning. The well‐aligned mesoporous structure and synergetic effect of the dual‐atom site realize FeCo‐LMC as a comparable bifunctional oxygen catalyst with the lowest overpotential difference (EOER−EORR) among the other catalysts with natural seawater electrolyte. When applied to the SWB system, the FeCo‐LMC shows a highly improved charge/discharge performance compared to Pt/C and a stable cycling performance for 200 h. Density functional theory calculations reveal the enhanced oxygen catalytic activity of FeCo‐LMC owing to electron delocalization and d‐band center adjustment of FeN4–CoN4 structure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在各向异性介孔碳颗粒上选择性自组装原子分散的铁钴双原子催化剂,用于高性能海水电池
钠海水电池(SWB)是一种利用丰富的海水作为电解质替代传统蒸馏水电解质和有机电解质的环保型储能系统。要实现 Na-SWB 的高能效,必须提高双功能氧电催化剂的活性。本研究利用聚合物共混物的旋光分解和前驱体的选择性定位,合成了原子分散的铁钴双原子氮掺杂透镜状介孔碳(FeCo-LMC)颗粒作为 SWB 阴极材料。排列整齐的介孔结构和双原子位点的协同效应使 FeCo-LMC 成为一种双功能氧催化剂,其过电势差(EOER-EORR)在天然海水电解质的其他催化剂中最低。密度泛函理论计算表明,FeN4-CoN4 结构的电子析出和 d 带中心调整增强了 FeCo-LMC 的氧催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Electromagnetic Absorption Mechanism of TPMS-Based Metastructures: Synergy Between Materials and Structures The Electron-Rich Interface Regulated MBene by S-Bridge Guided to Enhance Nitrogen Fixation under Environmental Conditions Bimodal Visual Sensors Based on Mechanoluminescence and Biosensing for Artificial Intelligence-Assisted Orthodontics Mechanically Reinforced Pseudosolid Polyelectrolyte Membranes via Layer-by-Layer Assembly for High-Performing Lithium-Metal Batteries Shrinkable Hydrogels through Host–Guest Interactions: A Robust Approach to Obtain Tubular Cell-Laden Scaffolds with Small Diameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1