Deducing Aerodynamic Roughness Length From Abundant Anemometer Tower Data to Inform Wind Resource Modeling

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-11-07 DOI:10.1029/2024GL111056
Jiamin Wang, Kun Yang, Ling Yuan, Jiarui Liu, Zhong Peng, Zuhuan Ren, Xu Zhou
{"title":"Deducing Aerodynamic Roughness Length From Abundant Anemometer Tower Data to Inform Wind Resource Modeling","authors":"Jiamin Wang,&nbsp;Kun Yang,&nbsp;Ling Yuan,&nbsp;Jiarui Liu,&nbsp;Zhong Peng,&nbsp;Zuhuan Ren,&nbsp;Xu Zhou","doi":"10.1029/2024GL111056","DOIUrl":null,"url":null,"abstract":"<p>Aerodynamic roughness length (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math>) fundamentally affects land surface momentum loss and wind resource simulation, but ground truth data of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> are sparse in space, causing <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> datasets used in atmospheric models are empirically estimated from land cover types through a look-up table. In this study, we derived <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> values from 101 anemometer towers in China. Taking them as ground truth, we show that existing gridded <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> datasets determined from either a look-up table or a machine-learning method contain considerable uncertainty and fail to capture the variability of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> within each land cover type, although the latter performs better. Even for the widely used ERA5, its <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> is overestimated in wind-rich regions of China, causing an underestimation of near-surface wind speed. This highlights the necessity to improve <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> data in atmospheric models. Current rapidly expanding anemometer towers may substantially enrich <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation> ${z}_{0}$</annotation>\n </semantics></math> truth data and thus provide potential to improve wind resource modeling.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 21","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111056","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aerodynamic roughness length ( z 0 ${z}_{0}$ ) fundamentally affects land surface momentum loss and wind resource simulation, but ground truth data of z 0 ${z}_{0}$ are sparse in space, causing z 0 ${z}_{0}$ datasets used in atmospheric models are empirically estimated from land cover types through a look-up table. In this study, we derived z 0 ${z}_{0}$ values from 101 anemometer towers in China. Taking them as ground truth, we show that existing gridded z 0 ${z}_{0}$ datasets determined from either a look-up table or a machine-learning method contain considerable uncertainty and fail to capture the variability of z 0 ${z}_{0}$ within each land cover type, although the latter performs better. Even for the widely used ERA5, its z 0 ${z}_{0}$ is overestimated in wind-rich regions of China, causing an underestimation of near-surface wind speed. This highlights the necessity to improve z 0 ${z}_{0}$ data in atmospheric models. Current rapidly expanding anemometer towers may substantially enrich z 0 ${z}_{0}$ truth data and thus provide potential to improve wind resource modeling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从丰富的风速仪塔数据中推导空气动力粗糙度长度,为风能资源建模提供信息
空气动力粗糙度长度(z0${z}_{0}$)从根本上影响着地表动量损失和风资源模拟,但z0${z}_{0}$的地面实况数据空间稀少,导致大气模式中使用的z0${z}_{0}$数据集是通过查表根据土地覆被类型经验估算的。在本研究中,我们从中国 101 个风速计塔中得出了 z0${z}_{0}$ 值。以这些数据为基本真实值,我们发现,现有的网格 z0${z}_{0}$ 数据集无论是通过查询表还是机器学习方法确定的,都含有相当大的不确定性,而且无法捕捉到每种土地覆被类型中 z0${z}_{0}$ 的变化,尽管后者的表现更好。即使是广泛使用的ERA5,其z0${z}_{0}$在中国多风地区也被高估,导致近地面风速被低估。这凸显了改进大气模式中 z0{z}_{0}$ 数据的必要性。目前快速扩建的风速计塔可能会极大地丰富 z0${z}_{0}$ 真实数据,从而为改进风资源模式提供可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
How Cratonic Roots Survive With Weak Mid-Lithosphere Discontinuities Emissions of Perfluorinated Greenhouse Gases in Southeastern China Derived From High-Frequency In Situ Observations First Observation of Ionospheric Plasma Bubble Signatures by Ca+ Lidar at Low Latitude Interseismic Coupling Along the Java-Timor Subduction-Collision Zone at East Indonesia Identifying Physical Drivers of Arctic Sea Ice Growth and Their Changing Roles in a Warming Climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1