Enhancement of thermoelectric transport in surface halogenated Ti2O MOenes via electron–phonon drag effect

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-11-10 DOI:10.1016/j.apsusc.2024.161766
Yu-Lu Wan , Cui-E Hu , Hua-Yun Geng , Xiang-Rong Chen
{"title":"Enhancement of thermoelectric transport in surface halogenated Ti2O MOenes via electron–phonon drag effect","authors":"Yu-Lu Wan ,&nbsp;Cui-E Hu ,&nbsp;Hua-Yun Geng ,&nbsp;Xiang-Rong Chen","doi":"10.1016/j.apsusc.2024.161766","DOIUrl":null,"url":null,"abstract":"<div><div>Designing efficient and environmentally friendly thermoelectric materials near room temperature is critical, and the electron–phonon drag effect on thermoelectric transport in monolayers remains largely unexplored. This manuscript systematically investigates the electron–phonon drag effect in surface halogenated Ti<sub>2</sub>O MOenes (Ti<sub>2</sub>OX<sub>2</sub>, X = F, Cl) by solving fully coupled electron–phonon Boltzmann transport equations. We find that the phonon drag effect significantly enhances the total Seebeck coefficient and various electronic transport coefficients, including the thermal response of electrons to an electric field, electrical conductivity, and electronic thermal conductivity at zero field, while the electron drag effect notably increases the lattice thermal conductivity, especially at high carrier concentrations and low temperatures. Furthermore, the electron–phonon drag effect significantly increases the thermoelectric figure of merit (<em>zT</em>) across 100–900 K, with the greatest enhancement at low temperatures. At room temperature, <em>zT</em> increases by 13.73 times for Ti<sub>2</sub>OF<sub>2</sub> and 2.82 times for Ti<sub>2</sub>OCl<sub>2</sub>, achieving maximum values of 0.92 and 0.84, respectively. Our work underscores the superior thermoelectric performance of surface halogenated Ti<sub>2</sub>O MOenes near room temperature and the potential of leveraging electron–phonon drag effects to enhance the electrical, thermal and thermoelectric transport in monolayers.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"683 ","pages":"Article 161766"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224024826","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing efficient and environmentally friendly thermoelectric materials near room temperature is critical, and the electron–phonon drag effect on thermoelectric transport in monolayers remains largely unexplored. This manuscript systematically investigates the electron–phonon drag effect in surface halogenated Ti2O MOenes (Ti2OX2, X = F, Cl) by solving fully coupled electron–phonon Boltzmann transport equations. We find that the phonon drag effect significantly enhances the total Seebeck coefficient and various electronic transport coefficients, including the thermal response of electrons to an electric field, electrical conductivity, and electronic thermal conductivity at zero field, while the electron drag effect notably increases the lattice thermal conductivity, especially at high carrier concentrations and low temperatures. Furthermore, the electron–phonon drag effect significantly increases the thermoelectric figure of merit (zT) across 100–900 K, with the greatest enhancement at low temperatures. At room temperature, zT increases by 13.73 times for Ti2OF2 and 2.82 times for Ti2OCl2, achieving maximum values of 0.92 and 0.84, respectively. Our work underscores the superior thermoelectric performance of surface halogenated Ti2O MOenes near room temperature and the potential of leveraging electron–phonon drag effects to enhance the electrical, thermal and thermoelectric transport in monolayers.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电子-声子阻力效应增强表面卤化 Ti2O MOenes 的热电传输
设计接近室温的高效环保热电材料至关重要,而单层热电传输中的电子-声子阻力效应在很大程度上仍未得到探索。本手稿通过求解完全耦合的电子-声子波尔兹曼输运方程,系统地研究了表面卤化 Ti2O MOenes (Ti2OX2, X = F, Cl) 中的电子-声子阻力效应。我们发现声子拖曳效应显著提高了总塞贝克系数和各种电子输运系数,包括电子对电场的热响应、电导率和零场时的电子热导率,而电子拖曳效应显著提高了晶格热导率,尤其是在高载流子浓度和低温条件下。此外,电子-声子阻力效应显著提高了 100-900 K 的热电功勋值(zT),其中低温时的提高幅度最大。在室温下,Ti2OF2 和 Ti2OCl2 的 zT 分别增加了 13.73 倍和 2.82 倍,最大值分别为 0.92 和 0.84。我们的工作强调了表面卤化 Ti2O MOenes 在室温附近的优异热电性能,以及利用电子-声子阻力效应增强单层中的电学、热学和热电传输的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Ultrathin Ti3C2Tx MXene/Cellulose nanofiber composite film for enhanced mechanics & EMI shielding via freeze-thaw intercalation In-situ homologous bromine vacancies for enhanced C-Br bond activation and rapid debromination of decabromodiphenyl ether Oxygen vacancies-promoted oxidative esterification of ethylene glycol to methyl glycolate over Au/ZnO catalyst Photocatalytic dye removal with ZnO/Laser-Induced graphene nanocomposite Corrigendum to “A comparative nanotribological investigation on amorphous and polycrystalline forms of MoS2” [Appl. Surf. Sci. 672 (2024) 16042]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1