Clinton R. Bruce, Teddy Ang, Jason D. Toms, Giang M. Dao, Jean Liu, Glenn M. Ward, David N. O’Neal, Dale J. Morrison, Greg M. Kowalski
{"title":"The effect of small increases in blood glucose on insulin secretion and endogenous glucose production in humans","authors":"Clinton R. Bruce, Teddy Ang, Jason D. Toms, Giang M. Dao, Jean Liu, Glenn M. Ward, David N. O’Neal, Dale J. Morrison, Greg M. Kowalski","doi":"10.2337/db24-0388","DOIUrl":null,"url":null,"abstract":"Small glycemic increments (≤0.5 mmol/L) can exert suppressive actions on endogenous glucose production (EGP) however it is unclear if this is an insulin dependent or independent process. Here, we performed a low-rate glucose infusion in control participants without diabetes and in people with type 1 diabetes (T1D) to better understand this phenomenon. Glucose kinetics, hormones and metabolites were measured during a 1 mg/kg/min glucose infusion (90 min) which rapidly increased glucose by ∼0.3 mmol/L in control participants. Insulin concentrations and secretion quickly increased by ∼20%, resulting in a ∼40% suppression of EGP, while glucose disposal remained unchanged. Free fatty acids (FFA) and glucagon were gradually suppressed to ∼30% below baseline at 60 min. When repeated under constant basal insulin concentrations in participants with T1D, glucose infusion caused only partial and transient EGP suppression, hence glucose increased in a near-linear manner, reaching levels ∼2 mmol/L above baseline at 90 min. FFAs and glucagon remained unchanged, while glucose disposal modestly increased. This demonstrates that small glycemic increments exert subtle stimulatory effects on insulin secretion that have potent metabolic actions on the liver and adipose tissue. It is conceivable that subtle increases in glucose could potentially serve as a signal for β-cell adaptation.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"35 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0388","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Small glycemic increments (≤0.5 mmol/L) can exert suppressive actions on endogenous glucose production (EGP) however it is unclear if this is an insulin dependent or independent process. Here, we performed a low-rate glucose infusion in control participants without diabetes and in people with type 1 diabetes (T1D) to better understand this phenomenon. Glucose kinetics, hormones and metabolites were measured during a 1 mg/kg/min glucose infusion (90 min) which rapidly increased glucose by ∼0.3 mmol/L in control participants. Insulin concentrations and secretion quickly increased by ∼20%, resulting in a ∼40% suppression of EGP, while glucose disposal remained unchanged. Free fatty acids (FFA) and glucagon were gradually suppressed to ∼30% below baseline at 60 min. When repeated under constant basal insulin concentrations in participants with T1D, glucose infusion caused only partial and transient EGP suppression, hence glucose increased in a near-linear manner, reaching levels ∼2 mmol/L above baseline at 90 min. FFAs and glucagon remained unchanged, while glucose disposal modestly increased. This demonstrates that small glycemic increments exert subtle stimulatory effects on insulin secretion that have potent metabolic actions on the liver and adipose tissue. It is conceivable that subtle increases in glucose could potentially serve as a signal for β-cell adaptation.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.