Sky T. H. Ng, Michael J. Price, Naomi Richardson, Maher Nawaf, Alastair Copland, Heather B. Streeter, Parth Narendran, David C. Wraith
{"title":"Pre-clinical development of a tolerogenic peptide from glutamate decarboxylase as a candidate for antigen-specific immunotherapy in type 1 diabetes","authors":"Sky T. H. Ng, Michael J. Price, Naomi Richardson, Maher Nawaf, Alastair Copland, Heather B. Streeter, Parth Narendran, David C. Wraith","doi":"10.2337/db23-0996","DOIUrl":null,"url":null,"abstract":"Dysregulation and loss of immune tolerance towards pancreatic β-cell autoantigens are features of type 1 diabetes (T1D). Until recently, life-long insulin injection was the only approved treatment for T1D, and this does not address the underlying disease pathology. Antigen-specific immunotherapy (ASI) seeks to restore tolerance and holds potential as a new therapeutic strategy for treating autoimmune diseases with well characterised antigens. Peptide ASI using processing independent CD4+ T-cell epitopes (PIPs) shows promising results in several autoimmune diseases. Here we successfully applied the principles of PIP design to the T1D autoantigen glutamate decarboxylase 65 (GAD65). Peptides spanning GAD65 predicted to be pan-HLA-DR binding were selected. Peptide P10 displayed enriched responses in peripheral blood mononuclear cells from people with T1D. The minimal epitope of the P10 peptide was fine mapped using T-cell hybridomas generated from HLA-DRB1*04:01 transgenic mice. This minimal epitope, P10Sol, was demonstrated to induce tolerance to the parent peptide in HLA-DRB1*04:01 transgenic mice using a novel activation-induced marker assay. Finally, we show that GAD65 P10Sol PIP is recognised by CD4+ T-cells from people with T1D who possess a range of HLA-DR alleles and can, therefore, be defined as a pan-DR binding peptide with therapeutic potential.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"66 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db23-0996","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Dysregulation and loss of immune tolerance towards pancreatic β-cell autoantigens are features of type 1 diabetes (T1D). Until recently, life-long insulin injection was the only approved treatment for T1D, and this does not address the underlying disease pathology. Antigen-specific immunotherapy (ASI) seeks to restore tolerance and holds potential as a new therapeutic strategy for treating autoimmune diseases with well characterised antigens. Peptide ASI using processing independent CD4+ T-cell epitopes (PIPs) shows promising results in several autoimmune diseases. Here we successfully applied the principles of PIP design to the T1D autoantigen glutamate decarboxylase 65 (GAD65). Peptides spanning GAD65 predicted to be pan-HLA-DR binding were selected. Peptide P10 displayed enriched responses in peripheral blood mononuclear cells from people with T1D. The minimal epitope of the P10 peptide was fine mapped using T-cell hybridomas generated from HLA-DRB1*04:01 transgenic mice. This minimal epitope, P10Sol, was demonstrated to induce tolerance to the parent peptide in HLA-DRB1*04:01 transgenic mice using a novel activation-induced marker assay. Finally, we show that GAD65 P10Sol PIP is recognised by CD4+ T-cells from people with T1D who possess a range of HLA-DR alleles and can, therefore, be defined as a pan-DR binding peptide with therapeutic potential.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.