Influence of Biaxial and Isotropic Strain on The Thermoelectric Performance of PbSnTeSe High-Entropy Alloy: A Density-Functional Theory Study

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-11-08 DOI:10.1016/j.mtphys.2024.101590
Ming Xia, Pascal Boulet, Marie-Christine Record
{"title":"Influence of Biaxial and Isotropic Strain on The Thermoelectric Performance of PbSnTeSe High-Entropy Alloy: A Density-Functional Theory Study","authors":"Ming Xia, Pascal Boulet, Marie-Christine Record","doi":"10.1016/j.mtphys.2024.101590","DOIUrl":null,"url":null,"abstract":"Strain engineering is an effective method to improve materials thermoelectric (TE) performance. In this study, both biaxial and isotropic strains ranging from -3% to +3% and from -3% to -1%, respectively, were applied to improve the TE properties of PbSnTeSe high entropy alloy (HEA). The effects of strain on the TE transport properties of PbSnTeSe HEA were investigated using first-principles calculations combined with Boltzmann transport theory. Under biaxial strain, n-type doped PbSnTeSe HEA shows an increase in the optimal power factor (<span><math></math></span>) with both compressive and tensile strains. For p-type doping, compressive strain enhances the <span><math></math></span>, whereas tensile strain reduces it. Within a strain range of -3% to +3%, the optimal <span><math></math></span> are 7.8–9.5 mW/mK<sup>2</sup> for n-type and 0.85–1.3 mW/mK<sup>2</sup> for p-type doped PbSnTeSe HEA. The maximum figure of merit (<span><math></math></span>) value of 1.63 for n-type doped PbSnTeSe HEA at 300 K under 3% tensile strain is 61% higher than the <span><math></math></span> value of 1.1 without strain. Under isotropic strain ranging from 0% to -3%, the <span><math></math></span> increases from 7.8 to 14 mW/mK<sup>2</sup> for n-type and from 1.1 to 3.4 mW/mK<sup>2</sup> for p-type doped PbSnTeSe HEA. Additionally, isotropic strain boosts the maximum <span><math></math></span> value for p-type doped PbSnTeSe HEA at 300 K from 0.3 to 0.85 under -3% strain. This study confirms that strain engineering is an effective strategy to enhance the thermoelectric properties of PbSnTeSe HEA.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2024.101590","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strain engineering is an effective method to improve materials thermoelectric (TE) performance. In this study, both biaxial and isotropic strains ranging from -3% to +3% and from -3% to -1%, respectively, were applied to improve the TE properties of PbSnTeSe high entropy alloy (HEA). The effects of strain on the TE transport properties of PbSnTeSe HEA were investigated using first-principles calculations combined with Boltzmann transport theory. Under biaxial strain, n-type doped PbSnTeSe HEA shows an increase in the optimal power factor () with both compressive and tensile strains. For p-type doping, compressive strain enhances the , whereas tensile strain reduces it. Within a strain range of -3% to +3%, the optimal are 7.8–9.5 mW/mK2 for n-type and 0.85–1.3 mW/mK2 for p-type doped PbSnTeSe HEA. The maximum figure of merit () value of 1.63 for n-type doped PbSnTeSe HEA at 300 K under 3% tensile strain is 61% higher than the value of 1.1 without strain. Under isotropic strain ranging from 0% to -3%, the increases from 7.8 to 14 mW/mK2 for n-type and from 1.1 to 3.4 mW/mK2 for p-type doped PbSnTeSe HEA. Additionally, isotropic strain boosts the maximum value for p-type doped PbSnTeSe HEA at 300 K from 0.3 to 0.85 under -3% strain. This study confirms that strain engineering is an effective strategy to enhance the thermoelectric properties of PbSnTeSe HEA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双轴和各向同性应变对 PbSnTeSe 高熵合金热电性能的影响:密度泛函理论研究
应变工程是提高材料热电(TE)性能的有效方法。在本研究中,为了改善铅硒碲高熵合金(HEA)的 TE 性能,分别施加了 -3% 至 +3% 的双轴应变和 -3% 至 -1% 的各向同性应变。采用第一原理计算结合玻尔兹曼输运理论研究了应变对 PbSnTeSe 高熵合金 TE 输运特性的影响。在双轴应变下,n 型掺杂的 PbSnTeSe HEA 的最佳功率因数()随着压缩和拉伸应变的增加而增加。对于 p 型掺杂,压缩应变会提高最佳功率因数,而拉伸应变则会降低最佳功率因数。在 -3% 至 +3% 的应变范围内,n 型掺杂 PbSnTeSe HEA 的最佳功率因数为 7.8-9.5 mW/mK2,p 型掺杂 PbSnTeSe HEA 的最佳功率因数为 0.85-1.3 mW/mK2。在 300 K 条件下,n 型掺杂的 PbSnTeSe HEA 在 3% 拉伸应变下的最大功勋值()为 1.63,比无应变时的 1.1 高出 61%。在 0% 到 -3% 的各向同性应变下,n 型掺杂的 PbSnTeSe HEA 的应变值从 7.8 mW/mK2 增加到 14 mW/mK2,p 型掺杂的 PbSnTeSe HEA 的应变值从 1.1 mW/mK2 增加到 3.4 mW/mK2。此外,各向同性应变可将 300 K 时 p 型掺杂的 PbSnTeSe HEA 在-3%应变下的最大值从 0.3 提高到 0.85。这项研究证实,应变工程是提高 PbSnTeSe HEA 热电性能的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Grain recovery facilitated low-angle grain boundaries and texture for high-performance BiSbTe alloys Superconducting memory and trapped magnetic flux in ternary lanthanum polyhydrides NiFe pyrophosphate enables long-term alkaline seawater oxidation at an ampere-level current density Impact of an annealing atmosphere on band-alignment of a plasma-enhanced atomic layer deposition-grown Ga2O3/SiC heterojunction Highly Stretchable, Low-Hysteresis, and Antifreeze Hydrogel for Low-Grade Thermal Energy Harvesting in Ionic Thermoelectric Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1