Predicting the Energy Spectra of Solar Energetic Particles with a Machine Learning Regression Algorithm

Jiajun Liu, Zhendi Huang, Jingnan Guo, Yubao Wang, Jiajia Liu
{"title":"Predicting the Energy Spectra of Solar Energetic Particles with a Machine Learning Regression Algorithm","authors":"Jiajun Liu, Zhendi Huang, Jingnan Guo, Yubao Wang, Jiajia Liu","doi":"10.3847/2041-8213/ad8bbc","DOIUrl":null,"url":null,"abstract":"Solar energetic particles (SEPs) are a major source of space radiation, especially within the inner heliosphere. These particles, originating from solar flares and coronal mass ejections (CMEs), propagate primarily along interplanetary magnetic fields. The energy spectra of SEP events are crucial for assessing radiation effects and understanding the acceleration and propagation mechanisms in their source regions. In this study, we employed a decision tree regression algorithm with cost complexity pruning to predict SEP energy spectra, including peak flux and integral fluence spectra. This approach uses only solar flares, CMEs, and solar wind data as input parameters and demonstrates strong performance to accurately predict SEP spectra. This method holds significant real-time application value for monitoring and forecasting radiation risks in both deep space and near-Earth environments.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad8bbc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energetic particles (SEPs) are a major source of space radiation, especially within the inner heliosphere. These particles, originating from solar flares and coronal mass ejections (CMEs), propagate primarily along interplanetary magnetic fields. The energy spectra of SEP events are crucial for assessing radiation effects and understanding the acceleration and propagation mechanisms in their source regions. In this study, we employed a decision tree regression algorithm with cost complexity pruning to predict SEP energy spectra, including peak flux and integral fluence spectra. This approach uses only solar flares, CMEs, and solar wind data as input parameters and demonstrates strong performance to accurately predict SEP spectra. This method holds significant real-time application value for monitoring and forecasting radiation risks in both deep space and near-Earth environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习回归算法预测太阳高能粒子能谱
太阳高能粒子(SEPs)是空间辐射的一个主要来源,尤其是在日光层内部。这些粒子源自太阳耀斑和日冕物质抛射(CME),主要沿行星际磁场传播。SEP 事件的能谱对于评估辐射效应和了解其源区的加速和传播机制至关重要。在这项研究中,我们采用了一种带有成本复杂性剪枝的决策树回归算法来预测 SEP 能量谱,包括峰值通量和积分通量谱。该方法仅使用太阳耀斑、CME 和太阳风数据作为输入参数,在准确预测 SEP 能谱方面表现出很强的性能。这种方法对于监测和预测深空和近地环境中的辐射风险具有重要的实时应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Updated Cosmological Constraints in Extended Parameter Space with Planck PR4, DESI Baryon Acoustic Oscillations, and Supernovae: Dynamical Dark Energy, Neutrino Masses, Lensing Anomaly, and the Hubble Tension Rates and Beaming Angles of Gamma-Ray Bursts Associated with Compact Binary Coalescences Prominent Mid-infrared Excess of the Dwarf Planet (136472) Makemake Discovered by JWST/MIRI Indicates Ongoing Activity CEERS Key Paper. IX. Identifying Galaxy Mergers in CEERS NIRCam Images Using Random Forests and Convolutional Neural Networks Direct Measurements of Synchrotron-emitting Electrons at Near-Sun Shocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1