Bessel beam optical coherence microscopy enables multiscale assessment of cerebrovascular network morphology and function

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-11-11 DOI:10.1038/s41377-024-01649-1
Lukas Glandorf, Bastian Wittmann, Jeanne Droux, Chaim Glück, Bruno Weber, Susanne Wegener, Mohamad El Amki, Rainer Leitgeb, Bjoern Menze, Daniel Razansky
{"title":"Bessel beam optical coherence microscopy enables multiscale assessment of cerebrovascular network morphology and function","authors":"Lukas Glandorf, Bastian Wittmann, Jeanne Droux, Chaim Glück, Bruno Weber, Susanne Wegener, Mohamad El Amki, Rainer Leitgeb, Bjoern Menze, Daniel Razansky","doi":"10.1038/s41377-024-01649-1","DOIUrl":null,"url":null,"abstract":"<p>Understanding the morphology and function of large-scale cerebrovascular networks is crucial for studying brain health and disease. However, reconciling the demands for imaging on a broad scale with the precision of high-resolution volumetric microscopy has been a persistent challenge. In this study, we introduce Bessel beam optical coherence microscopy with an extended focus to capture the full cortical vascular hierarchy in mice over 1000 × 1000 × 360 μm<sup>3</sup> field-of-view at capillary level resolution. The post-processing pipeline leverages a supervised deep learning approach for precise 3D segmentation of high-resolution angiograms, hence permitting reliable examination of microvascular structures at multiple spatial scales. Coupled with high-sensitivity Doppler optical coherence tomography, our method enables the computation of both axial and transverse blood velocity components as well as vessel-specific blood flow direction, facilitating a detailed assessment of morpho-functional characteristics across all vessel dimensions. Through graph-based analysis, we deliver insights into vascular connectivity, all the way from individual capillaries to broader network interactions, a task traditionally challenging for in vivo studies. The new imaging and analysis framework extends the frontiers of research into cerebrovascular function and neurovascular pathologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"70 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01649-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the morphology and function of large-scale cerebrovascular networks is crucial for studying brain health and disease. However, reconciling the demands for imaging on a broad scale with the precision of high-resolution volumetric microscopy has been a persistent challenge. In this study, we introduce Bessel beam optical coherence microscopy with an extended focus to capture the full cortical vascular hierarchy in mice over 1000 × 1000 × 360 μm3 field-of-view at capillary level resolution. The post-processing pipeline leverages a supervised deep learning approach for precise 3D segmentation of high-resolution angiograms, hence permitting reliable examination of microvascular structures at multiple spatial scales. Coupled with high-sensitivity Doppler optical coherence tomography, our method enables the computation of both axial and transverse blood velocity components as well as vessel-specific blood flow direction, facilitating a detailed assessment of morpho-functional characteristics across all vessel dimensions. Through graph-based analysis, we deliver insights into vascular connectivity, all the way from individual capillaries to broader network interactions, a task traditionally challenging for in vivo studies. The new imaging and analysis framework extends the frontiers of research into cerebrovascular function and neurovascular pathologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝塞尔光束光学相干显微镜可对脑血管网络的形态和功能进行多尺度评估
了解大规模脑血管网络的形态和功能对于研究大脑健康和疾病至关重要。然而,如何协调大尺度成像需求与高分辨率容积显微镜的精确性一直是个难题。在这项研究中,我们引入了具有扩展焦点的贝塞尔光束光学相干显微镜,以毛细管级分辨率捕捉小鼠1000 × 1000 × 360 μm3视场的完整皮层血管层次。后处理管道利用监督深度学习方法对高分辨率血管图进行精确的三维分割,从而在多个空间尺度上对微血管结构进行可靠的检查。结合高灵敏度多普勒光学相干断层扫描,我们的方法能够计算轴向和横向血流速度成分以及特定血管的血流方向,从而有助于详细评估所有血管维度的形态功能特征。通过基于图的分析,我们可以深入了解血管的连通性,从单个毛细血管到更广泛的网络互动,这是一项传统上对体内研究具有挑战性的任务。新的成像和分析框架拓展了脑血管功能和神经血管病理学的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Optical semantic communication through multimode fiber: from symbol transmission to sentiment analysis Using light to image millimeter wave based on stacked meta-MEMS chip Comment on “Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning” Cascaded metalenses boost applications in near-eye display Reply to: comment on “Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1