Christian Willberg, Jan‐Timo Hesse, Felix Winkelmann, Robert Hein
{"title":"Peridynamic Framework to Model Additive Manufacturing Processes","authors":"Christian Willberg, Jan‐Timo Hesse, Felix Winkelmann, Robert Hein","doi":"10.1002/adts.202400818","DOIUrl":null,"url":null,"abstract":"The study presents a framework for analyzing Additive Manufacturing processes within the Peridynamics (PD) software <jats:styled-content>PeriLab</jats:styled-content>. This framewor k employs a mesh‐free, point‐based numerical approach to approximate the continuum PD equations. Implemented within this framework are thermal, thermo‐mechanical, and simple additive models. These models have been validated against analytical solutions, Finite Element (FE) models, and <jats:styled-content>Peridigm</jats:styled-content> simulations. To leverage the PD mesh‐free implementation, the study introduces a novel boundary detection algorithm. This algorithm is essential because the outer surface area may change during the manufacturing process. It operates without requiring surface or topology information, relying instead on the comparison of neighborhood volume to sphere volume. Additionally, the study introduces a wrapper that generates the mesh necessary for simulating the printing process, based on the G‐code machine input path. Finally, the study presents a comprehensive analysis of an L‐shaped profile utilizing the developed features, comparing the results with those obtained from an <jats:styled-content>Abaqus</jats:styled-content> solution.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"36 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400818","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The study presents a framework for analyzing Additive Manufacturing processes within the Peridynamics (PD) software PeriLab. This framewor k employs a mesh‐free, point‐based numerical approach to approximate the continuum PD equations. Implemented within this framework are thermal, thermo‐mechanical, and simple additive models. These models have been validated against analytical solutions, Finite Element (FE) models, and Peridigm simulations. To leverage the PD mesh‐free implementation, the study introduces a novel boundary detection algorithm. This algorithm is essential because the outer surface area may change during the manufacturing process. It operates without requiring surface or topology information, relying instead on the comparison of neighborhood volume to sphere volume. Additionally, the study introduces a wrapper that generates the mesh necessary for simulating the printing process, based on the G‐code machine input path. Finally, the study presents a comprehensive analysis of an L‐shaped profile utilizing the developed features, comparing the results with those obtained from an Abaqus solution.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics