{"title":"Damage‐level classification considering both correlation between image and text data and confidence of attention map","authors":"Keisuke Maeda, Naoki Ogawa, Takahiro Ogawa, Miki Haseyama","doi":"10.1111/mice.13366","DOIUrl":null,"url":null,"abstract":"In damage‐level classification, deep learning. models are more likely to focus on regions unrelated to classification targets because of the complexities inherent in real data, such as the diversity of damages (e.g., crack, efflorescence, and corrosion). This causes performance degradation. To solve this problem, it is necessary to handle data complexity and uncertainty. This study proposes a multimodal deep learning model that can focus on damaged regions using text data related to damage in images, such as materials and components. Furthermore, by adjusting the effect of attention maps on damage‐level classification performance based on the confidence calculated when estimating these maps, the proposed method realizes an accurate damage‐level classification. Our contribution is the development of a model with an end‐to‐end multimodal attention mechanism that can simultaneously consider both text and image data and the confidence of the attention map. Finally, experiments using real images validate the effectiveness of the proposed method.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"13 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13366","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In damage‐level classification, deep learning. models are more likely to focus on regions unrelated to classification targets because of the complexities inherent in real data, such as the diversity of damages (e.g., crack, efflorescence, and corrosion). This causes performance degradation. To solve this problem, it is necessary to handle data complexity and uncertainty. This study proposes a multimodal deep learning model that can focus on damaged regions using text data related to damage in images, such as materials and components. Furthermore, by adjusting the effect of attention maps on damage‐level classification performance based on the confidence calculated when estimating these maps, the proposed method realizes an accurate damage‐level classification. Our contribution is the development of a model with an end‐to‐end multimodal attention mechanism that can simultaneously consider both text and image data and the confidence of the attention map. Finally, experiments using real images validate the effectiveness of the proposed method.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.