{"title":"Noise‐robust structural response estimation method using short‐time Fourier transform and long short‐term memory","authors":"Da Yo Yun, Hyo Seon Park","doi":"10.1111/mice.13370","DOIUrl":null,"url":null,"abstract":"Structural response estimation based on deep learning can suffer from reduced estimation performance owing to discrepancies between the training and test data as the noise level in the test data increases. This study proposes a short‐time Fourier transform‐based long short‐term memory (STFT‐LSTM) model to improve estimation performance in the presence of noise and ensure estimation robustness. This model enables robust estimations in the presence of noise by positioning an STFT layer before feeding the data into the LSTM layer. The output transformed into the time‐frequency domain by the STFT layer is learned by the LSTM model. The robustness of the proposed model was validated using a numerical model with three degrees of freedom at various signal‐to‐noise ratio levels, and its robustness against impulse and periodic noise was verified. Experimental validation assessed the estimation robustness under impact load and verified the robustness against environmental noise in the acquired acceleration response.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"35 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13370","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Structural response estimation based on deep learning can suffer from reduced estimation performance owing to discrepancies between the training and test data as the noise level in the test data increases. This study proposes a short‐time Fourier transform‐based long short‐term memory (STFT‐LSTM) model to improve estimation performance in the presence of noise and ensure estimation robustness. This model enables robust estimations in the presence of noise by positioning an STFT layer before feeding the data into the LSTM layer. The output transformed into the time‐frequency domain by the STFT layer is learned by the LSTM model. The robustness of the proposed model was validated using a numerical model with three degrees of freedom at various signal‐to‐noise ratio levels, and its robustness against impulse and periodic noise was verified. Experimental validation assessed the estimation robustness under impact load and verified the robustness against environmental noise in the acquired acceleration response.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.