{"title":"Conjugated tetraphenylethene-based polymers for supercapacitor","authors":"Abdelreheem Abdelfatah Saddik , Hani Nasser Abdelhamid","doi":"10.1016/j.polymer.2024.127778","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis of two conjugated polymers (<strong>P1</strong> and <strong>P2</strong>) for supercapacitor application was reported. The materials were prepared using a condensation reaction between tetraphenylethene (<strong>TPE</strong>) with di-(<strong>TPE-2CHO</strong>) or tetra-carboxaldehyde (<strong>TPE-4CHO</strong>) derivatives and 1,5-diaminonaphthalene (<strong>1,5-DAN</strong>). The polymers were characterized using Fourier transforms infrared (FT-IR), solid-state <sup>13</sup>C nuclear magnetic resonance (<sup>13</sup>C NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS). <strong>P1</strong> and <strong>P2</strong> polymers displayed a spherical shape, with particle sizes of 6.8 ± 1 μm and 0.97 ± 0.1 μm, respectively. In addition, <strong>P1</strong> and <strong>P2</strong> exhibited wide light absorption (200–466 nm), accompanied by a relatively low bandgap of 2.3 eV and 2.4 eV for P1 and P2 respectively. Electrochemical investigations of <strong>P1</strong> and <strong>P2</strong> revealed redox behavior observed in the cyclic voltammetry (CV) curves suggesting a faradaic charge storage mechanism. At a scan rate of 1 mV/s, <strong>P1</strong> and <strong>P2</strong> demonstrated specific capacitances of 274.8 F/g and 207.9 F/g, respectively. The electrochemical performance of both polymers was further analyzed using galvanostatic charge-discharge (GCD), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) using Nyquist plots. The observed decrease in charge transfer resistance for <strong>P1</strong> and <strong>P2</strong> can be ascribed to the conjugation within their chemical structures. The polymer can be recycled for 5000 cycles with <10 % loss of the polymer's efficiency.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"315 ","pages":"Article 127778"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124011145","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of two conjugated polymers (P1 and P2) for supercapacitor application was reported. The materials were prepared using a condensation reaction between tetraphenylethene (TPE) with di-(TPE-2CHO) or tetra-carboxaldehyde (TPE-4CHO) derivatives and 1,5-diaminonaphthalene (1,5-DAN). The polymers were characterized using Fourier transforms infrared (FT-IR), solid-state 13C nuclear magnetic resonance (13C NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS). P1 and P2 polymers displayed a spherical shape, with particle sizes of 6.8 ± 1 μm and 0.97 ± 0.1 μm, respectively. In addition, P1 and P2 exhibited wide light absorption (200–466 nm), accompanied by a relatively low bandgap of 2.3 eV and 2.4 eV for P1 and P2 respectively. Electrochemical investigations of P1 and P2 revealed redox behavior observed in the cyclic voltammetry (CV) curves suggesting a faradaic charge storage mechanism. At a scan rate of 1 mV/s, P1 and P2 demonstrated specific capacitances of 274.8 F/g and 207.9 F/g, respectively. The electrochemical performance of both polymers was further analyzed using galvanostatic charge-discharge (GCD), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) using Nyquist plots. The observed decrease in charge transfer resistance for P1 and P2 can be ascribed to the conjugation within their chemical structures. The polymer can be recycled for 5000 cycles with <10 % loss of the polymer's efficiency.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.