A novel melt extrusion method for efficient and large-scale in-situ exfoliation of boron nitride to prepare high performance thermal conductive polymer composite
{"title":"A novel melt extrusion method for efficient and large-scale in-situ exfoliation of boron nitride to prepare high performance thermal conductive polymer composite","authors":"Lingcao Tan , Jingjun Zhong , Wenshuai Guo , Qi Gao , Jiqian Li , Yue He , Jiarong Huang , Wenhua Xu , Shuping Xiao , Huiwen Yu , Baiping Xu","doi":"10.1016/j.polymer.2024.127809","DOIUrl":null,"url":null,"abstract":"<div><div>The polymer/hexagonal boron nitride (h-BN) thermal conductive composite an excellent candidate for thermal management materials due to its insulation properties. However, it is a challenge to achieve efficient large-scale exfoliation of h-BN through melt blending to balance thermal conductivity and mechanical properties. In this work, an innovative melt mixing strategy using the co-rotating non-twin screw extruder (NTSE) was developed to prepare the high-density polyethylene (HDPE)/h-BN composites with excellent overall performance. The results were well compared with those of conventional twin screw extruder (TSE). The NTSE triggers chaotic mixing and provides a strong elongation flow field capable of <em>h</em>-BN efficiently exfoliating into a few layers, while simultaneously ensuring uniform dispersion and distribution within HDPE. The in-plane thermal conductivity and elongation at break of the NTSE composite with 10 wt% h-BN addition were 7.63 W∙m<sup>−1</sup> K<sup>−1</sup> and 653.1 %, which were 74.7 % and 70.3 % higher than those prepared by TSE, while the enhancement rates rose to 174.6 % and 74.4 % when 30 wt% h-BN was added, respectively. The in-plane thermal conductivity enhancement ratio of NTSE was more than 3000 % when the h-BN content was higher than 10 wt%. Besides, the thermal stability, crystallinity, and thermal diffusion of the NTSE composites were also enhanced to different degrees. This strategy is efficient to coordinating the conflicting between the comprehensive performance and large-scale preparation of thermally conductive polymer composites.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"315 ","pages":"Article 127809"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124011455","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The polymer/hexagonal boron nitride (h-BN) thermal conductive composite an excellent candidate for thermal management materials due to its insulation properties. However, it is a challenge to achieve efficient large-scale exfoliation of h-BN through melt blending to balance thermal conductivity and mechanical properties. In this work, an innovative melt mixing strategy using the co-rotating non-twin screw extruder (NTSE) was developed to prepare the high-density polyethylene (HDPE)/h-BN composites with excellent overall performance. The results were well compared with those of conventional twin screw extruder (TSE). The NTSE triggers chaotic mixing and provides a strong elongation flow field capable of h-BN efficiently exfoliating into a few layers, while simultaneously ensuring uniform dispersion and distribution within HDPE. The in-plane thermal conductivity and elongation at break of the NTSE composite with 10 wt% h-BN addition were 7.63 W∙m−1 K−1 and 653.1 %, which were 74.7 % and 70.3 % higher than those prepared by TSE, while the enhancement rates rose to 174.6 % and 74.4 % when 30 wt% h-BN was added, respectively. The in-plane thermal conductivity enhancement ratio of NTSE was more than 3000 % when the h-BN content was higher than 10 wt%. Besides, the thermal stability, crystallinity, and thermal diffusion of the NTSE composites were also enhanced to different degrees. This strategy is efficient to coordinating the conflicting between the comprehensive performance and large-scale preparation of thermally conductive polymer composites.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.