ZmHSFA2B self-regulatory loop is critical for heat tolerance in maize

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2024-11-10 DOI:10.1111/pbi.14497
Nannan Song, Jing Wang, Qianqian Qin, Anqi Su, Yifeng Cheng, Weina Si, Beijiu Cheng, Jun Fan, Haiyang Jiang
{"title":"ZmHSFA2B self-regulatory loop is critical for heat tolerance in maize","authors":"Nannan Song, Jing Wang, Qianqian Qin, Anqi Su, Yifeng Cheng, Weina Si, Beijiu Cheng, Jun Fan, Haiyang Jiang","doi":"10.1111/pbi.14497","DOIUrl":null,"url":null,"abstract":"The growth and development of maize (<i>Zea mays</i> L.) are significantly impeded by prolonged exposure to high temperatures. Heat stress transcription factors (HSFs) play crucial roles in enabling plants to detect and respond to elevated temperatures. However, the genetic mechanisms underlying the responses of HSFs to heat stress in maize remain unclear. Thus, we aimed to investigate the role of <i>ZmHSFA2B</i> in regulating heat tolerance in maize. Here, we report that <i>ZmHSFA2B</i> has two splicing variants, <i>ZmHSFA2B-I</i> and <i>ZmHSFA2B-II</i>. <i>ZmHSFA2B-I</i> encodes full-length ZmHSFA2B (ZmHSFA2B-I), whereas Zm<i>HSFA2B-II</i> encodes a truncated ZmHSFA2B (ZmHSFA2B-II). Overexpression of <i>ZmHSFA2B-I</i> improved heat tolerance in maize and <i>Arabidopsis thaliana</i>, but it also resulted in growth retardation as a side effect. RNA-sequencing and CUT&amp;Tag analyses identified <i>ZmMBR1</i> as a putative target of ZmHSFA2B-I. Overexpression of <i>ZmMBR1</i> also enhanced heat tolerance in Arabidopsis. ZmHSFA2B-II was primarily synthesized in response to heat stress and competitively interacted with ZmHSFA2B-I. This interaction consequently reduced the DNA-binding activities of ZmHSFA2B-I homodimers to the promoter of <i>ZmMBR1</i>. Subsequent investigations indicate that ZmHSFA2B-II limits the transactivation and tempers the function of ZmHSFA2B-I, thereby reducing the adverse effects of excessive ZmHSFA2B-I accumulation. Based on these observations, we propose that the alternative splicing of <i>ZmHSFA2B</i> generates a self-regulatory loop that fine-tunes heat stress response in maize.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"13 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14497","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The growth and development of maize (Zea mays L.) are significantly impeded by prolonged exposure to high temperatures. Heat stress transcription factors (HSFs) play crucial roles in enabling plants to detect and respond to elevated temperatures. However, the genetic mechanisms underlying the responses of HSFs to heat stress in maize remain unclear. Thus, we aimed to investigate the role of ZmHSFA2B in regulating heat tolerance in maize. Here, we report that ZmHSFA2B has two splicing variants, ZmHSFA2B-I and ZmHSFA2B-II. ZmHSFA2B-I encodes full-length ZmHSFA2B (ZmHSFA2B-I), whereas ZmHSFA2B-II encodes a truncated ZmHSFA2B (ZmHSFA2B-II). Overexpression of ZmHSFA2B-I improved heat tolerance in maize and Arabidopsis thaliana, but it also resulted in growth retardation as a side effect. RNA-sequencing and CUT&Tag analyses identified ZmMBR1 as a putative target of ZmHSFA2B-I. Overexpression of ZmMBR1 also enhanced heat tolerance in Arabidopsis. ZmHSFA2B-II was primarily synthesized in response to heat stress and competitively interacted with ZmHSFA2B-I. This interaction consequently reduced the DNA-binding activities of ZmHSFA2B-I homodimers to the promoter of ZmMBR1. Subsequent investigations indicate that ZmHSFA2B-II limits the transactivation and tempers the function of ZmHSFA2B-I, thereby reducing the adverse effects of excessive ZmHSFA2B-I accumulation. Based on these observations, we propose that the alternative splicing of ZmHSFA2B generates a self-regulatory loop that fine-tunes heat stress response in maize.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZmHSFA2B 自我调节环路对玉米的耐热性至关重要
玉米(Zea mays L.)的生长和发育会因长期暴露在高温下而受到严重阻碍。热胁迫转录因子(HSFs)在植物检测和应对高温方面起着至关重要的作用。然而,玉米中 HSFs 对热胁迫反应的遗传机制仍不清楚。因此,我们旨在研究 ZmHSFA2B 在调控玉米耐热性中的作用。在这里,我们报告了 ZmHSFA2B 有两个剪接变体,即 ZmHSFA2B-I 和 ZmHSFA2B-II。ZmHSFA2B-I 编码全长的 ZmHSFA2B(ZmHSFA2B-I),而 ZmHSFA2B-II 编码截短的 ZmHSFA2B(ZmHSFA2B-II)。过量表达 ZmHSFA2B-I 提高了玉米和拟南芥的耐热性,但也会导致生长迟缓。RNA 测序和 CUT&Tag 分析确定 ZmMBR1 为 ZmHSFA2B-I 的假定靶标。ZmMBR1 的过表达也增强了拟南芥的耐热性。ZmHSFA2B-II 主要在应对热胁迫时合成,并与 ZmHSFA2B-I 发生竞争性相互作用。这种相互作用降低了 ZmHSFA2B-I 同源二聚体与 ZmMBR1 启动子的 DNA 结合活性。随后的研究表明,ZmHSFA2B-II 限制了 ZmHSFA2B-I 的转录活化并缓和了其功能,从而减少了 ZmHSFA2B-I 过度积累的不利影响。基于这些观察结果,我们认为 ZmHSFA2B 的替代剪接产生了一个自我调节环,可对玉米的热胁迫反应进行微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Creation of high-resistant starch rice through systematic editing of amylopectin biosynthetic genes in rs4. Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy Pathway elucidation and heterologous reconstitution of the long-chain alkane pentadecane biosynthesis from Pogostemon cablin. Increasing thermostability of the key photorespiratory enzyme glycerate 3-kinase by structure-based recombination Genetic improvement of eating and cooking quality of rice cultivars in southern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1