Nannan Song, Jing Wang, Qianqian Qin, Anqi Su, Yifeng Cheng, Weina Si, Beijiu Cheng, Jun Fan, Haiyang Jiang
{"title":"ZmHSFA2B self-regulatory loop is critical for heat tolerance in maize","authors":"Nannan Song, Jing Wang, Qianqian Qin, Anqi Su, Yifeng Cheng, Weina Si, Beijiu Cheng, Jun Fan, Haiyang Jiang","doi":"10.1111/pbi.14497","DOIUrl":null,"url":null,"abstract":"The growth and development of maize (<i>Zea mays</i> L.) are significantly impeded by prolonged exposure to high temperatures. Heat stress transcription factors (HSFs) play crucial roles in enabling plants to detect and respond to elevated temperatures. However, the genetic mechanisms underlying the responses of HSFs to heat stress in maize remain unclear. Thus, we aimed to investigate the role of <i>ZmHSFA2B</i> in regulating heat tolerance in maize. Here, we report that <i>ZmHSFA2B</i> has two splicing variants, <i>ZmHSFA2B-I</i> and <i>ZmHSFA2B-II</i>. <i>ZmHSFA2B-I</i> encodes full-length ZmHSFA2B (ZmHSFA2B-I), whereas Zm<i>HSFA2B-II</i> encodes a truncated ZmHSFA2B (ZmHSFA2B-II). Overexpression of <i>ZmHSFA2B-I</i> improved heat tolerance in maize and <i>Arabidopsis thaliana</i>, but it also resulted in growth retardation as a side effect. RNA-sequencing and CUT&Tag analyses identified <i>ZmMBR1</i> as a putative target of ZmHSFA2B-I. Overexpression of <i>ZmMBR1</i> also enhanced heat tolerance in Arabidopsis. ZmHSFA2B-II was primarily synthesized in response to heat stress and competitively interacted with ZmHSFA2B-I. This interaction consequently reduced the DNA-binding activities of ZmHSFA2B-I homodimers to the promoter of <i>ZmMBR1</i>. Subsequent investigations indicate that ZmHSFA2B-II limits the transactivation and tempers the function of ZmHSFA2B-I, thereby reducing the adverse effects of excessive ZmHSFA2B-I accumulation. Based on these observations, we propose that the alternative splicing of <i>ZmHSFA2B</i> generates a self-regulatory loop that fine-tunes heat stress response in maize.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"13 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14497","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The growth and development of maize (Zea mays L.) are significantly impeded by prolonged exposure to high temperatures. Heat stress transcription factors (HSFs) play crucial roles in enabling plants to detect and respond to elevated temperatures. However, the genetic mechanisms underlying the responses of HSFs to heat stress in maize remain unclear. Thus, we aimed to investigate the role of ZmHSFA2B in regulating heat tolerance in maize. Here, we report that ZmHSFA2B has two splicing variants, ZmHSFA2B-I and ZmHSFA2B-II. ZmHSFA2B-I encodes full-length ZmHSFA2B (ZmHSFA2B-I), whereas ZmHSFA2B-II encodes a truncated ZmHSFA2B (ZmHSFA2B-II). Overexpression of ZmHSFA2B-I improved heat tolerance in maize and Arabidopsis thaliana, but it also resulted in growth retardation as a side effect. RNA-sequencing and CUT&Tag analyses identified ZmMBR1 as a putative target of ZmHSFA2B-I. Overexpression of ZmMBR1 also enhanced heat tolerance in Arabidopsis. ZmHSFA2B-II was primarily synthesized in response to heat stress and competitively interacted with ZmHSFA2B-I. This interaction consequently reduced the DNA-binding activities of ZmHSFA2B-I homodimers to the promoter of ZmMBR1. Subsequent investigations indicate that ZmHSFA2B-II limits the transactivation and tempers the function of ZmHSFA2B-I, thereby reducing the adverse effects of excessive ZmHSFA2B-I accumulation. Based on these observations, we propose that the alternative splicing of ZmHSFA2B generates a self-regulatory loop that fine-tunes heat stress response in maize.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.