CRISPR/Cas9‐mediated OsFd1 editing enhances rice broad‐spectrum resistance without growth and yield penalty

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2024-11-08 DOI:10.1111/pbi.14512
Hua Shi, Jinhui Chen, Minfeng Lu, Wenyan Li, Wanjun Deng, Ping Kang, Xi Zhang, Qiong Luo, Mo Wang
{"title":"CRISPR/Cas9‐mediated OsFd1 editing enhances rice broad‐spectrum resistance without growth and yield penalty","authors":"Hua Shi, Jinhui Chen, Minfeng Lu, Wenyan Li, Wanjun Deng, Ping Kang, Xi Zhang, Qiong Luo, Mo Wang","doi":"10.1111/pbi.14512","DOIUrl":null,"url":null,"abstract":"<p>Ferredoxins (Fds), a category of small iron-sulphur [2Fe-2S] cluster-containing proteins, localize in plastids and are required for distributing electrons from photosystem I (PSI) to downstream metabolic reactions (Hanke and Mulo, <span>2013</span>). Based on their expression pattern and redox potential, Fds in higher plants are classified into leaf (photosynthetic) and root (non-photosynthetic) types. In rice, five typical <i>Fd</i> genes have been identified, among which <i>OsFd1</i> encodes the primary photosynthetic Fd. Knockout of <i>OsFd1</i> caused rice lethal at seedling stage (He <i>et al</i>., <span>2020</span>), indicating an essential role of OsFd1 in rice photosynthetic electron transport.</p>\n<p>We recently reported that knockout of <i>OsFd4</i>, the major rice non-photosynthetic type Fd, increased rice resistance against the blight bacteria <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> (<i>Xoo</i>) (Lu <i>et al</i>., <span>2023</span>). To determine the immune function of OsFd1 and the possibility of <i>OsFd1</i> to be a target for genomic modification to enhance rice resistance, we performed CRISPR/Cas9-mediated <i>OsFd1</i> editing in Zhonghua 11 (ZH11) and obtained two loss-of-function alleles <i>Osfd1-1</i> and <i>Osfd1-2</i> carrying a 5-bp deletion and 1-bp insertion, respectively, in the coding region (Figure 1a). Consistent with the previous report (He <i>et al</i>., <span>2020</span>), both alleles were lethal at young seedling stage under the 12-h light/dark cycle condition (Figure 1b). However, when grown under constant dark, the etiolated seedlings of <i>Osfd1-1</i> and <i>Osfd1-2</i> grew similarly as ZH11 (Figure 1b), indicating that the lethality of <i>Osfd1</i> is light-dependent. We also found that <i>OsFd1</i> transcript levels and OsFd1 protein abundance were significantly increased under light (Figure S1). When the leaves detached from 10-day-old ZH11 and <i>Osfd1-1</i> seedlings grown under light cycle were stained with H<sub>2</sub>DCFDA, a visible cellular indicator for reactive oxygen species (ROS), clear fluorescent signals were observed in the chloroplasts of <i>Osfd1-1</i>, but not in those of ZH11 (Figure 1c), indicating that <i>OsFd1</i> deletion leads to constitutive ROS accumulation in chloroplasts. Similar to Arabidopsis <i>Fd2</i>-knockout mutant, both <i>Osfd1-1</i> and <i>Osfd1-2</i> accumulated significantly higher basal levels of jasmonic acid (JA) and JA-Ile than ZH11 (Figure 1d and Figure S2).</p>\n<figure><picture>\n<source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/345ee1bc-8890-439c-9f62-b42d8b506f6f/pbi14512-fig-0001-m.jpg\"/><img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/345ee1bc-8890-439c-9f62-b42d8b506f6f/pbi14512-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/bf1e9759-98e2-496a-84ca-546c30936d94/pbi14512-fig-0001-m.png\" title=\"Details are in the caption following the image\"/></picture><figcaption>\n<div><strong>Figure 1<span style=\"font-weight:normal\"></span></strong><div>Open in figure viewer<i aria-hidden=\"true\"></i><span>PowerPoint</span></div>\n</div>\n<div>Specific form of <i>OsFd1</i> gene-editing enhances rice broad-spectrum resistance without yield penalty. (a) Mutation sites of <i>OsFd1</i> in <i>Osfd1-1</i> and <i>Osfd1-2</i>. (b) Lethality of <i>Osfd1-1</i> and <i>Osfd1-2</i> seedlings is light-dependent. Bar = 5 cm. (c) <i>Osfd1-1</i> constitutively accumulates ROS in chloroplasts, detected by H<sub>2</sub>DCFDA. AF, chloroplasts autofluorescence. Bars = 20 μm. (d) <i>Osfd1-1</i> accumulated significantly higher basal levels of JA and JA-Ile than WT (means ± SD, <i>n</i> = 3). FW, fresh weight. (e) Mutation sites of <i>OsFd1</i> in <i>Osfd1-3</i> and <i>Osfd1-4</i> with the schematic diagram showing the deleted amino acids. CSP, chloroplast-localization signal peptides. (f) <i>Osfd1-3</i> and <i>Osfd1-4</i> mutants displayed WT-like growth. Bar = 10 cm. (g) The diseased leaves of ZH11, <i>Osfd1-3</i> and <i>Osfd1-4</i> after punch-inoculated with conidial spores of the <i>M. oryzae</i> isolate Guy11. (h) Fungal biomass analysis showed that <i>Osfd1-4</i> supported significantly less <i>M. oryzae</i> growth than WT and <i>Osfd1-3</i>. Data are means ± SD (<i>n</i> = 3, two inoculated leaves from different plants per group). (i) The diseased leaves of ZH11, <i>Osfd1-3</i> and <i>Osfd1-4</i> after inoculated with <i>Xoo</i> strain Pxo86. Bar = 3 cm. (j, k) <i>Osfd1-4</i> had shorter diseased lesion length (j) and supported less <i>Xoo</i> bacterial growth (k) than ZH11 and <i>Osfd1-3</i>. Bars present means ± SD, <i>n</i> = 6 in (j) and <i>n</i> = 3 (two leaves per group) in (k). Cfu, colony-forming units. (l) Chitin- and flg22-induced ROS burst were enhanced in <i>Osfd1-4</i> mutants. Error bars represent SE (<i>n</i> = 8). (m) Y2H assays showed that self-interaction of OsFd1Δ5aa was disrupted, compared with that of OsFd1 and OsFd1Δ1aa. (n) H<sub>2</sub>DCFDA staining indicated weak ROS accumulation in <i>Osfd1-4</i> chloroplasts. Bars = 20 μm. Statistically significant differences in this Figure were determined by Student's <i>t</i>-test (*<i>P</i> &lt; 0.05, **<i>P</i> &lt; 0.01, ns means not significant).</div>\n</figcaption>\n</figure>\n<p>ROS production and JA/JA-Ile accumulation contribute to rice immunity (Liu and Zhang, <span>2022</span>; Ma <i>et al</i>., <span>2022</span>). To investigate OsFd1's function in rice defense, we transformed <i>OsFd1</i>-overexpression (OE) construct into the callus of heterozygous <i>Osfd1-1</i> and obtained two independent OE<i>OsFd1</i> transgenic lines in homozygous <i>Osfd1-1</i> background (<i>Osfd1-1</i> OE<i>OsFd1</i>, Figure S3a). OE<i>OsFd1</i> completely rescued the seedling lethal phenotype of <i>Osfd1-1</i> (Figure S3b,c). When inoculated with the rice blast fungus <i>Magnaporthe oryzae</i> (<i>M. oryzae</i>), the <i>Osfd1-1</i> OE<i>OsFd1</i> lines supported significantly more <i>M. oryzae</i> growth than ZH11 (Figure S3d). We then challenged the <i>Osfd1-1</i> OE<i>OsFd1</i> lines with <i>Xoo</i> and found that both lines displayed significantly longer blight lesions (Figure S3e,f) and supported more <i>Xoo</i> growth (Figure S3g), indicating that OE<i>OsFd1</i> compromised rice defence against the pathogens. Moreover, chitin- and flg22-induced ROS burst were severely reduced in the OE<i>OsFd1</i> lines compared with ZH11 (Figure S4). Taken together, our data showed that OsFd1 plays a negative role in rice defence against the pathogens.</p>\n<p>The seedling lethality caused by loss function of OsFd1 limits its application in rice disease resistance breeding. Therefore, we sought to identify weak alleles of <i>Osfd1</i> that can confer robust resistance without growth penalty. By further screening the CRISPR/Cas9-mediated editing progenies, we identified another two homozygous <i>Osfd1</i> alleles <i>Osfd1-3</i> and <i>Osfd1-4</i> containing 3-bp and 15-bp in-frame deletions. The mutation forms are named as <i>OsFd1Δ3bp</i> and <i>OsFd1Δ15bp</i>, which result in 1 and 5 amino acids deletions, respectively (Figure 1e). Notably, both mutants exhibited WT-like growth and no obvious defects in the agronomic traits (Figure 1f and Figure S5). When challenged with <i>M. oryzae</i> and <i>Xoo</i> strains, <i>Osfd1-4</i>, rather than <i>Osfd1-3</i>, displayed significantly enhanced resistance compared with ZH11 (Figure 1g–k, Figure S6). Consistently, the increased disease resistance was accompanied by enhanced chitin- and flg22-induced ROS burst (Figure 1l).</p>\n<p>Both the OsFd1 variants, OsFd1Δ1aa and OsFd1Δ5aa, carry the amino acids deletion between the chloroplast-localization signal peptides (CSP) and the conserved [2Fe-2S] cluster (Figure 1e), causing no disruption of their chloroplast localization (Figure S7). Fds are shown to form functional dimers to facilitate electron carrying and delivering (Hasan <i>et al</i>., <span>2002</span>; Iwasaki <i>et al</i>., <span>2011</span>; Lu <i>et al</i>., <span>2023</span>). Our yeast two-hybrid assays indicated a strong self-interaction of OsFd1 (Figure S8). Interestingly, OsFd1Δ5aa, but not OsFd1Δ1aa, showed notably decreased self-association (Figure 1m), suggesting that the five-amino acid deletion in OsFd1Δ5aa may compromise OsFd1 dimerization and decrease the efficiency in electron transfer. Consistently, we observed a moderate ROS accumulation in the chloroplasts of <i>Osfd1-4</i>, rather than <i>Osfd1-3</i> (Figure 1n).</p>\n<p>In an attempt to investigate the potential of <i>OsFd1Δ15bp</i> in rice-resistant breeding, we crossed NG9108 (as female parent), a commercial conventional japonica cultivar, with <i>Osfd1-4</i> (as male parent) and obtained the F<sub>2</sub> population. All the tested F<sub>2</sub> plants grown normally (Figure S9a), indicating that the <i>OsFd1Δ15bp</i> mutation caused no penalty on growth in different genetic background. When the F<sub>2</sub> progenies were inoculated with YN-5, an <i>M. oryzae</i> strain with similar virulence to NG9108 and ZH11, the plants carrying homozygous <i>OsFd1Δ15bp</i> showed increased resistance, compared with those carrying wild-type <i>OsFd1</i> or heterozygous <i>OsFd1</i>/<i>OsFd1Δ15bp</i> (Figure S9b), indicating that the resistance co-segregates with <i>OsFd1Δ15bp</i> mutation.</p>\n<p>Collectively, our results revealed OsFd1's critical functions in rice growth and defence. Notably, a specific truncated form of OsFd1 was characterized to confer rice broad-spectrum resistance without yield penalty. These findings provide a potentiality of utilizing <i>OsFd1</i> gene-editing in resistance breeding to balance rice growth and defense.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"80 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14512","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferredoxins (Fds), a category of small iron-sulphur [2Fe-2S] cluster-containing proteins, localize in plastids and are required for distributing electrons from photosystem I (PSI) to downstream metabolic reactions (Hanke and Mulo, 2013). Based on their expression pattern and redox potential, Fds in higher plants are classified into leaf (photosynthetic) and root (non-photosynthetic) types. In rice, five typical Fd genes have been identified, among which OsFd1 encodes the primary photosynthetic Fd. Knockout of OsFd1 caused rice lethal at seedling stage (He et al., 2020), indicating an essential role of OsFd1 in rice photosynthetic electron transport.

We recently reported that knockout of OsFd4, the major rice non-photosynthetic type Fd, increased rice resistance against the blight bacteria Xanthomonas oryzae pv. oryzae (Xoo) (Lu et al., 2023). To determine the immune function of OsFd1 and the possibility of OsFd1 to be a target for genomic modification to enhance rice resistance, we performed CRISPR/Cas9-mediated OsFd1 editing in Zhonghua 11 (ZH11) and obtained two loss-of-function alleles Osfd1-1 and Osfd1-2 carrying a 5-bp deletion and 1-bp insertion, respectively, in the coding region (Figure 1a). Consistent with the previous report (He et al., 2020), both alleles were lethal at young seedling stage under the 12-h light/dark cycle condition (Figure 1b). However, when grown under constant dark, the etiolated seedlings of Osfd1-1 and Osfd1-2 grew similarly as ZH11 (Figure 1b), indicating that the lethality of Osfd1 is light-dependent. We also found that OsFd1 transcript levels and OsFd1 protein abundance were significantly increased under light (Figure S1). When the leaves detached from 10-day-old ZH11 and Osfd1-1 seedlings grown under light cycle were stained with H2DCFDA, a visible cellular indicator for reactive oxygen species (ROS), clear fluorescent signals were observed in the chloroplasts of Osfd1-1, but not in those of ZH11 (Figure 1c), indicating that OsFd1 deletion leads to constitutive ROS accumulation in chloroplasts. Similar to Arabidopsis Fd2-knockout mutant, both Osfd1-1 and Osfd1-2 accumulated significantly higher basal levels of jasmonic acid (JA) and JA-Ile than ZH11 (Figure 1d and Figure S2).

Abstract Image
Figure 1
Open in figure viewerPowerPoint
Specific form of OsFd1 gene-editing enhances rice broad-spectrum resistance without yield penalty. (a) Mutation sites of OsFd1 in Osfd1-1 and Osfd1-2. (b) Lethality of Osfd1-1 and Osfd1-2 seedlings is light-dependent. Bar = 5 cm. (c) Osfd1-1 constitutively accumulates ROS in chloroplasts, detected by H2DCFDA. AF, chloroplasts autofluorescence. Bars = 20 μm. (d) Osfd1-1 accumulated significantly higher basal levels of JA and JA-Ile than WT (means ± SD, n = 3). FW, fresh weight. (e) Mutation sites of OsFd1 in Osfd1-3 and Osfd1-4 with the schematic diagram showing the deleted amino acids. CSP, chloroplast-localization signal peptides. (f) Osfd1-3 and Osfd1-4 mutants displayed WT-like growth. Bar = 10 cm. (g) The diseased leaves of ZH11, Osfd1-3 and Osfd1-4 after punch-inoculated with conidial spores of the M. oryzae isolate Guy11. (h) Fungal biomass analysis showed that Osfd1-4 supported significantly less M. oryzae growth than WT and Osfd1-3. Data are means ± SD (n = 3, two inoculated leaves from different plants per group). (i) The diseased leaves of ZH11, Osfd1-3 and Osfd1-4 after inoculated with Xoo strain Pxo86. Bar = 3 cm. (j, k) Osfd1-4 had shorter diseased lesion length (j) and supported less Xoo bacterial growth (k) than ZH11 and Osfd1-3. Bars present means ± SD, n = 6 in (j) and n = 3 (two leaves per group) in (k). Cfu, colony-forming units. (l) Chitin- and flg22-induced ROS burst were enhanced in Osfd1-4 mutants. Error bars represent SE (n = 8). (m) Y2H assays showed that self-interaction of OsFd1Δ5aa was disrupted, compared with that of OsFd1 and OsFd1Δ1aa. (n) H2DCFDA staining indicated weak ROS accumulation in Osfd1-4 chloroplasts. Bars = 20 μm. Statistically significant differences in this Figure were determined by Student's t-test (*P < 0.05, **P < 0.01, ns means not significant).

ROS production and JA/JA-Ile accumulation contribute to rice immunity (Liu and Zhang, 2022; Ma et al., 2022). To investigate OsFd1's function in rice defense, we transformed OsFd1-overexpression (OE) construct into the callus of heterozygous Osfd1-1 and obtained two independent OEOsFd1 transgenic lines in homozygous Osfd1-1 background (Osfd1-1 OEOsFd1, Figure S3a). OEOsFd1 completely rescued the seedling lethal phenotype of Osfd1-1 (Figure S3b,c). When inoculated with the rice blast fungus Magnaporthe oryzae (M. oryzae), the Osfd1-1 OEOsFd1 lines supported significantly more M. oryzae growth than ZH11 (Figure S3d). We then challenged the Osfd1-1 OEOsFd1 lines with Xoo and found that both lines displayed significantly longer blight lesions (Figure S3e,f) and supported more Xoo growth (Figure S3g), indicating that OEOsFd1 compromised rice defence against the pathogens. Moreover, chitin- and flg22-induced ROS burst were severely reduced in the OEOsFd1 lines compared with ZH11 (Figure S4). Taken together, our data showed that OsFd1 plays a negative role in rice defence against the pathogens.

The seedling lethality caused by loss function of OsFd1 limits its application in rice disease resistance breeding. Therefore, we sought to identify weak alleles of Osfd1 that can confer robust resistance without growth penalty. By further screening the CRISPR/Cas9-mediated editing progenies, we identified another two homozygous Osfd1 alleles Osfd1-3 and Osfd1-4 containing 3-bp and 15-bp in-frame deletions. The mutation forms are named as OsFd1Δ3bp and OsFd1Δ15bp, which result in 1 and 5 amino acids deletions, respectively (Figure 1e). Notably, both mutants exhibited WT-like growth and no obvious defects in the agronomic traits (Figure 1f and Figure S5). When challenged with M. oryzae and Xoo strains, Osfd1-4, rather than Osfd1-3, displayed significantly enhanced resistance compared with ZH11 (Figure 1g–k, Figure S6). Consistently, the increased disease resistance was accompanied by enhanced chitin- and flg22-induced ROS burst (Figure 1l).

Both the OsFd1 variants, OsFd1Δ1aa and OsFd1Δ5aa, carry the amino acids deletion between the chloroplast-localization signal peptides (CSP) and the conserved [2Fe-2S] cluster (Figure 1e), causing no disruption of their chloroplast localization (Figure S7). Fds are shown to form functional dimers to facilitate electron carrying and delivering (Hasan et al., 2002; Iwasaki et al., 2011; Lu et al., 2023). Our yeast two-hybrid assays indicated a strong self-interaction of OsFd1 (Figure S8). Interestingly, OsFd1Δ5aa, but not OsFd1Δ1aa, showed notably decreased self-association (Figure 1m), suggesting that the five-amino acid deletion in OsFd1Δ5aa may compromise OsFd1 dimerization and decrease the efficiency in electron transfer. Consistently, we observed a moderate ROS accumulation in the chloroplasts of Osfd1-4, rather than Osfd1-3 (Figure 1n).

In an attempt to investigate the potential of OsFd1Δ15bp in rice-resistant breeding, we crossed NG9108 (as female parent), a commercial conventional japonica cultivar, with Osfd1-4 (as male parent) and obtained the F2 population. All the tested F2 plants grown normally (Figure S9a), indicating that the OsFd1Δ15bp mutation caused no penalty on growth in different genetic background. When the F2 progenies were inoculated with YN-5, an M. oryzae strain with similar virulence to NG9108 and ZH11, the plants carrying homozygous OsFd1Δ15bp showed increased resistance, compared with those carrying wild-type OsFd1 or heterozygous OsFd1/OsFd1Δ15bp (Figure S9b), indicating that the resistance co-segregates with OsFd1Δ15bp mutation.

Collectively, our results revealed OsFd1's critical functions in rice growth and defence. Notably, a specific truncated form of OsFd1 was characterized to confer rice broad-spectrum resistance without yield penalty. These findings provide a potentiality of utilizing OsFd1 gene-editing in resistance breeding to balance rice growth and defense.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR/Cas9 介导的 OsFd1 编辑可增强水稻的广谱抗性,而不会影响生长和产量
铁氧化还原蛋白(Fds)是一类含铁硫[2Fe-2S]簇的小蛋白,定位于质体,需要将电子从光合系统 I(PSI)分配到下游代谢反应中(Hanke 和 Mulo,2013 年)。根据其表达模式和氧化还原电位,高等植物中的 Fds 可分为叶(光合)和根(非光合)类型。在水稻中,已经发现了五个典型的 Fd 基因,其中 OsFd1 编码主要的光合 Fd。我们最近报道,敲除主要的水稻非光合型 Fd--OsFd4,可提高水稻对枯萎病菌 Xanthomonas oryzae pv. oryzae(Xoo)的抗性(Lu 等,2023)。为了确定 OsFd1 的免疫功能以及 OsFd1 成为基因组改造靶标以增强水稻抗性的可能性,我们在中华 11 号(ZH11)中进行了 CRISPR/Cas9 介导的 OsFd1 编辑,获得了两个功能缺失等位基因 Osfd1-1 和 Osfd1-2,编码区分别带有 5-bp 缺失和 1-bp 插入(图 1a)。与之前的报告(He 等,2020)一致,在 12 小时光照/黑暗循环条件下,这两个等位基因在幼苗期都是致死的(图 1b)。然而,在恒定黑暗条件下生长时,Osfd1-1 和 Osfd1-2 的幼苗与 ZH11 生长相似(图 1b),表明 Osfd1 的致死性是光依赖性的。我们还发现,OsFd1 的转录水平和 OsFd1 蛋白丰度在光照下显著增加(图 S1)。用可见的细胞活性氧(ROS)指示剂 H2DCFDA 对在光周期下生长 10 天的 ZH11 和 Osfd1-1 幼苗的叶片进行染色,在 Osfd1-1 的叶绿体中观察到清晰的荧光信号,而在 ZH11 的叶绿体中观察不到(图 1c),这表明 OsFd1 的缺失会导致叶绿体中组成型 ROS 的积累。与拟南芥 Fd2-基因敲除突变体类似,Osfd1-1 和 Osfd1-2 积累的茉莉酸(JA)和 JA-Ile 的基础水平都明显高于 ZH11(图 1d 和图 S2)。(a) Osfd1-1 和 Osfd1-2 中 OsFd1 的突变位点。(b) Osfd1-1 和 Osfd1-2 幼苗的致死率与光照有关。条 = 5 厘米。(c) 通过 H2DCFDA 检测,Osfd1-1 在叶绿体中连续积累 ROS。AF,叶绿体自发荧光。条距 = 20 μm。(d) Osfd1-1 积累的 JA 和 JA-Ile 基础水平明显高于 WT(平均值 ± SD,n = 3)。FW,鲜重。(e)Osfd1-3 和 Osfd1-4 中 OsFd1 的突变位点及被删除氨基酸的示意图。CSP,叶绿体定位信号肽。(f) Osfd1-3 和 Osfd1-4 突变体表现出类似 WT 的生长。条 = 10 厘米。(g)ZH11、Osfd1-3 和 Osfd1-4 的病叶在打孔接种了 M. oryzae 分离物 Guy11 的分生孢子后。 h)真菌生物量分析表明,Osfd1-4 支持的 M. oryzae 生长量明显少于 WT 和 Osfd1-3。数据为平均值 ± SD(n = 3,每组不同植株的两片接种叶片)。(i) ZH11、Osfd1-3 和 Osfd1-4 接种 Xoo 菌株 Pxo86 后的病叶。条 = 3 厘米。(j、k)与 ZH11 和 Osfd1-3 相比,Osfd1-4 的病斑长度(j)较短,支持 Xoo 细菌生长的程度(k)较低。条形图表示平均值 ± SD,(j) 中 n = 6,(k) 中 n = 3(每组两片叶子)。Cfu,菌落形成单位。(l)Osfd1-4 突变体中几丁质和 flg22 诱导的 ROS 爆发增强。误差条代表 SE(n = 8)。(m)Y2H 分析表明,与 OsFd1 和 OsFd1Δ1aa 相比,OsFd1Δ5aa 的自身相互作用被破坏。(n)H2DCFDA 染色表明 Osfd1-4 叶绿体中 ROS 积累较弱。条 = 20 μm。图中差异有统计学意义(*P &lt; 0.05, **P &lt; 0.01, ns 表示无意义)。为了研究OsFd1在水稻防御中的功能,我们将OsFd1-overexpression(OE)构建体转化到杂合子Osfd1-1的胼胝体中,在同源Osfd1-1背景下获得了两个独立的OEOsFd1转基因品系(Osfd1-1 OEOsFd1,图S3a)。OEOsFd1 完全挽救了 Osfd1-1 的幼苗致死表型(图 S3b,c)。当接种稻瘟病真菌 Magnaporthe oryzae(M. oryzae)时,Osfd1-1 OEOsFd1 株系比 ZH11 株系支持更多的 M. oryzae 生长(图 S3d)。然后,我们用 Xoo 挑战 Osfd1-1 OEOsFd1 株系,发现这两个株系的枯萎病病斑明显更长(图 S3e,f),支持更多的 Xoo 生长(图 S3g),表明 OEOsFd1 削弱了水稻对病原体的防御能力。 此外,与 ZH11 相比,OEOsFd1 株系中几丁质和 flg22 诱导的 ROS 爆发严重减少(图 S4)。总之,我们的数据表明,OsFd1 在水稻抵御病原体的过程中起着负面作用。OsFd1 的功能缺失导致的幼苗致死限制了其在水稻抗病育种中的应用。因此,我们试图找出 Osfd1 的弱等位基因,使其在不影响生长的情况下赋予水稻稳健的抗性。通过进一步筛选 CRISPR/Cas9 介导的编辑后代,我们发现了另外两个同源的 Osfd1 等位基因 Osfd1-3 和 Osfd1-4,它们分别含有 3-bp 和 15-bp 的框内缺失。这两个突变体被命名为 OsFd1Δ3bp 和 OsFd1Δ15bp,分别缺失 1 个和 5 个氨基酸(图 1e)。值得注意的是,这两个突变体的生长与 WT 相似,农艺性状没有明显缺陷(图 1f 和图 S5)。与 ZH11 相比,当受到 M. oryzae 和 Xoo 菌株的侵染时,Osfd1-4 而不是 Osfd1-3 的抗性明显增强(图 1g-k,图 S6)。OsFd1变体 OsFd1Δ1aa 和 OsFd1Δ5aa 的叶绿体定位信号肽(CSP)和保守的[2Fe-2S]簇之间的氨基酸缺失(图 1e),不会破坏其叶绿体定位(图 S7)。Fds 可形成功能性二聚体,以促进电子携带和传递(Hasan 等人,2002 年;Iwasaki 等人,2011 年;Lu 等人,2023 年)。我们的酵母双杂交实验表明 OsFd1 有很强的自相互作用(图 S8)。有趣的是,OsFd1Δ5aa(而不是 OsFd1Δ1aa)的自结合能力明显下降(图 1m),这表明 OsFd1Δ5aa 中的五氨基酸缺失可能会影响 OsFd1 的二聚化,降低电子传递的效率。为了研究 OsFd1Δ15bp 在水稻抗性育种中的潜力,我们用商业常规粳稻品种 NG9108(雌性亲本)与 Osfd1-4(雄性亲本)杂交,得到了 F2 群体。所有受试 F2 植株均正常生长(图 S9a),表明 OsFd1Δ15bp 突变对不同遗传背景下的生长没有影响。当 F2 后代接种与 NG9108 和 ZH11 毒力相似的 M. oryzae 菌株 YN-5 时,与携带野生型 OsFd1 或杂合 OsFd1/OsFd1Δ15bp 的植株相比,携带同源杂合 OsFd1Δ15bp 的植株表现出更强的抗性(图 S9b),这表明抗性与 OsFd1Δ15bp 突变有关。总之,我们的研究结果揭示了 OsFd1 在水稻生长和防御中的关键功能。值得注意的是,OsFd1的一种特异截短形式具有赋予水稻广谱抗性而不影响产量的特性。这些发现为在抗性育种中利用 OsFd1 基因编辑技术平衡水稻生长和防御提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Creation of high-resistant starch rice through systematic editing of amylopectin biosynthetic genes in rs4. Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy Pathway elucidation and heterologous reconstitution of the long-chain alkane pentadecane biosynthesis from Pogostemon cablin. Increasing thermostability of the key photorespiratory enzyme glycerate 3-kinase by structure-based recombination Genetic improvement of eating and cooking quality of rice cultivars in southern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1