Guy Levin, Michael Yasmin, Oded Liran, Rawad Hanna, Oded Kleifeld, Guy Horev, Francis-André Wollman, Gadi Schuster, Wojciech J Nawrocki
{"title":"Processes independent of nonphotochemical quenching protect a high-light-tolerant desert alga from oxidative stress","authors":"Guy Levin, Michael Yasmin, Oded Liran, Rawad Hanna, Oded Kleifeld, Guy Horev, Francis-André Wollman, Gadi Schuster, Wojciech J Nawrocki","doi":"10.1093/plphys/kiae608","DOIUrl":null,"url":null,"abstract":"Non-photochemical quenching (NPQ) mechanisms are crucial for protecting photosynthesis from photoinhibition in plants, algae, and cyanobacteria, and their modulation is a long-standing goal for improving photosynthesis and crop yields. The current work demonstrates that Chlorella ohadii, a green micro-alga that thrives in the desert under high light intensities that are fatal to many photosynthetic organisms does not perform nor require NPQ to protect photosynthesis under constant high light. Instead of dissipating excess energy, it minimizes its uptake by eliminating the photosynthetic antenna of photosystem II. In addition, it accumulates antioxidants that neutralize harmful reactive oxygen species (ROS) and increases cyclic electron flow around PSI. These NPQ-independent responses proved efficient in preventing ROS accumulation and reducing oxidative damage to proteins in high-light-grown cells.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"5 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae608","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Non-photochemical quenching (NPQ) mechanisms are crucial for protecting photosynthesis from photoinhibition in plants, algae, and cyanobacteria, and their modulation is a long-standing goal for improving photosynthesis and crop yields. The current work demonstrates that Chlorella ohadii, a green micro-alga that thrives in the desert under high light intensities that are fatal to many photosynthetic organisms does not perform nor require NPQ to protect photosynthesis under constant high light. Instead of dissipating excess energy, it minimizes its uptake by eliminating the photosynthetic antenna of photosystem II. In addition, it accumulates antioxidants that neutralize harmful reactive oxygen species (ROS) and increases cyclic electron flow around PSI. These NPQ-independent responses proved efficient in preventing ROS accumulation and reducing oxidative damage to proteins in high-light-grown cells.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.