Evidence for widespread thermal acclimation of canopy photosynthesis

IF 15.8 1区 生物学 Q1 PLANT SCIENCES Nature Plants Pub Date : 2024-11-08 DOI:10.1038/s41477-024-01846-1
Jiangong Liu, Youngryel Ryu, Xiangzhong Luo, Benjamin Dechant, Benjamin D. Stocker, Trevor F. Keenan, Pierre Gentine, Xing Li, Bolun Li, Sandy P. Harrison, Iain Colin Prentice
{"title":"Evidence for widespread thermal acclimation of canopy photosynthesis","authors":"Jiangong Liu, Youngryel Ryu, Xiangzhong Luo, Benjamin Dechant, Benjamin D. Stocker, Trevor F. Keenan, Pierre Gentine, Xing Li, Bolun Li, Sandy P. Harrison, Iain Colin Prentice","doi":"10.1038/s41477-024-01846-1","DOIUrl":null,"url":null,"abstract":"Plants acclimate to temperature by adjusting their photosynthetic capacity over weeks to months. However, most evidence for photosynthetic acclimation derives from leaf-scale experiments. Here we address the scarcity of evidence for canopy-scale photosynthetic acclimation by examining the correlation between maximum photosynthetic rates (Amax,2,000) and growth temperature ( $$\\overline{{T}_{\\rm{air}}}$$ ) across a range of concurrent temperatures and canopy foliage quantity, using data from >200 eddy covariance sites. We detect widespread thermal acclimation of canopy-scale photosynthesis, demonstrated by enhanced Amax,2,000 under higher $$\\overline{{T}_{\\rm{air}}}$$ , across flux sites with adequate water availability. A 14-day period is identified as the most relevant timescale for acclimation across all sites, with a range of 12–25 days for different plant functional types. The mean apparent thermal acclimation rate across all ecosystems is 0.41 (−0.38–1.04 for 5th–95th percentile range) µmol m−2 s−1 °C−1, with croplands showing the largest acclimation rates and grasslands the lowest. Incorporating an optimality-based prediction of leaf photosynthetic capacities into a biochemical photosynthesis model is shown to improve the representation of thermal acclimation. Our results underscore the critical need for enhanced understanding and modelling of canopy-scale photosynthetic capacity to accurately predict plant responses to warmer growing seasons. Analysis of the FLUXNET2015 dataset provides observational evidence for widespread thermal acclimation of canopy-scale photosynthesis and its timescales across diverse biomes, improving its representation in land surface models.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1919-1927"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01846-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01846-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plants acclimate to temperature by adjusting their photosynthetic capacity over weeks to months. However, most evidence for photosynthetic acclimation derives from leaf-scale experiments. Here we address the scarcity of evidence for canopy-scale photosynthetic acclimation by examining the correlation between maximum photosynthetic rates (Amax,2,000) and growth temperature ( $$\overline{{T}_{\rm{air}}}$$ ) across a range of concurrent temperatures and canopy foliage quantity, using data from >200 eddy covariance sites. We detect widespread thermal acclimation of canopy-scale photosynthesis, demonstrated by enhanced Amax,2,000 under higher $$\overline{{T}_{\rm{air}}}$$ , across flux sites with adequate water availability. A 14-day period is identified as the most relevant timescale for acclimation across all sites, with a range of 12–25 days for different plant functional types. The mean apparent thermal acclimation rate across all ecosystems is 0.41 (−0.38–1.04 for 5th–95th percentile range) µmol m−2 s−1 °C−1, with croplands showing the largest acclimation rates and grasslands the lowest. Incorporating an optimality-based prediction of leaf photosynthetic capacities into a biochemical photosynthesis model is shown to improve the representation of thermal acclimation. Our results underscore the critical need for enhanced understanding and modelling of canopy-scale photosynthetic capacity to accurately predict plant responses to warmer growing seasons. Analysis of the FLUXNET2015 dataset provides observational evidence for widespread thermal acclimation of canopy-scale photosynthesis and its timescales across diverse biomes, improving its representation in land surface models.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
树冠光合作用普遍热适应的证据
植物通过在数周至数月内调整光合作用能力来适应温度。然而,光合适应的大多数证据都来自叶片尺度的实验。在这里,我们利用来自>200个涡度协方差站点的数据,研究了在一系列同期温度和冠层叶片数量下最大光合速率(Amax,2,000)与生长温度(\(overline{T}_{\rm{air}}}\)之间的相关性,从而解决冠层光合适应性证据稀缺的问题。我们发现,在水分充足的通量站点中,树冠尺度光合作用普遍存在热适应现象,表现为在高\(overline{{T}_{\rm{air}}\)条件下Amax,2,000增大。在所有通量地点,14 天的适应期被认为是最相关的时间尺度,不同植物功能类型的适应期范围为 12-25 天。所有生态系统的平均表观热适应率为 0.41(第 5-95 百分位数范围为-0.38-1.04) µmol m-2 s-1 °C-1,其中耕地的适应率最高,草地最低。将基于优化的叶片光合能力预测纳入生化光合作用模型可改善热适应性的表现。我们的研究结果表明,要准确预测植物对较暖生长季节的反应,亟需加强对冠层光合能力的了解和建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
期刊最新文献
How villin subclasses coordinate actin remodelling Disclosure of country of origin in patent applications might not help to protect genetic resources and traditional knowledge Time to end the vascular plant chauvinism Dry matters Understanding the genomic basis to empower sweet potato breeding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1