首页 > 最新文献

Nature Plants最新文献

英文 中文
Accelerated succession in Himalayan alpine treelines under climatic warming 气候变暖下喜马拉雅高山林带的加速演替
IF 18 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-18 DOI: 10.1038/s41477-024-01855-0
Shalik Ram Sigdel, Xiangyu Zheng, Flurin Babst, J. Julio Camarero, Shan Gao, Xiaoxia Li, Xiaoming Lu, Jayram Pandey, Binod Dawadi, Jian Sun, Haifeng Zhu, Tao Wang, Eryuan Liang, Josep Peñuelas

Understanding how climate change influences succession is fundamental for predicting future forest composition. Warming is expected to accelerate species succession at their cold thermal ranges, such as alpine treelines. Here we examined how interactions and successional strategies of the early-successional birch (Betula utilis) and the late-successional fir (Abies spectabilis) affected treeline dynamics by combining plot data with an individual-based treeline model at treelines in the central Himalayas. Fir showed increasing recruitment and a higher upslope shift rate (0.11 ± 0.02 m yr−1) compared with birch (0.06 ± 0.03 m yr−1) over the past 200 years. Spatial analyses indicate strong interspecies competition when trees were young. Model outputs from various climatic scenarios indicate that fir will probably accelerate its upslope movement with warming, while birch recruitment will decline drastically, forming stable or even retreating treelines. Our findings point to accelerating successional dynamics with late-successional species rapidly outcompeting pioneer species, offering insight into future forest succession and its influences on ecosystem services.

了解气候变化如何影响演替是预测未来森林组成的基础。预计气候变暖将加速物种在其寒冷热范围内的演替,如高山林木线。在喜马拉雅山脉中部的林线上,我们结合小区数据和基于个体的林线模型,研究了早演替桦树(Betula utilis)和晚演替冷杉(Abies spectabilis)的相互作用和演替策略如何影响林线动态。与桦树(0.06 ± 0.03 m/yr-1)相比,冷杉在过去 200 年中表现出不断增加的更新率和更高的上坡迁移率(0.11 ± 0.02 m/yr-1)。空间分析表明,在树木幼年时,物种间的竞争非常激烈。各种气候情景下的模型输出结果表明,随着气候变暖,冷杉可能会加速向上坡移动,而桦树的新陈代谢将急剧下降,形成稳定甚至后退的树线。我们的研究结果表明,随着晚演替物种迅速取代先演替物种,演替动态将不断加快,这为未来森林演替及其对生态系统服务的影响提供了启示。
{"title":"Accelerated succession in Himalayan alpine treelines under climatic warming","authors":"Shalik Ram Sigdel, Xiangyu Zheng, Flurin Babst, J. Julio Camarero, Shan Gao, Xiaoxia Li, Xiaoming Lu, Jayram Pandey, Binod Dawadi, Jian Sun, Haifeng Zhu, Tao Wang, Eryuan Liang, Josep Peñuelas","doi":"10.1038/s41477-024-01855-0","DOIUrl":"https://doi.org/10.1038/s41477-024-01855-0","url":null,"abstract":"<p>Understanding how climate change influences succession is fundamental for predicting future forest composition. Warming is expected to accelerate species succession at their cold thermal ranges, such as alpine treelines. Here we examined how interactions and successional strategies of the early-successional birch (<i>Betula utilis</i>) and the late-successional fir (<i>Abies spectabilis</i>) affected treeline dynamics by combining plot data with an individual-based treeline model at treelines in the central Himalayas. Fir showed increasing recruitment and a higher upslope shift rate (0.11 ± 0.02 m yr<sup>−1</sup>) compared with birch (0.06 ± 0.03 m yr<sup>−1</sup>) over the past 200 years. Spatial analyses indicate strong interspecies competition when trees were young. Model outputs from various climatic scenarios indicate that fir will probably accelerate its upslope movement with warming, while birch recruitment will decline drastically, forming stable or even retreating treelines. Our findings point to accelerating successional dynamics with late-successional species rapidly outcompeting pioneer species, offering insight into future forest succession and its influences on ecosystem services.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"17 1","pages":""},"PeriodicalIF":18.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New light on pyrenoid membrane tubules 火绒膜管的新发现
IF 18 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-15 DOI: 10.1038/s41477-024-01857-y
Jean-David Rochaix
The pyrenoid contains internal membrane structures that are required for efficient carbon fixation. The two proteins SAGA1 and MITH1 are necessary for the biogenesis of these membranes and the delivery of bicarbonate to the pyrenoid matrix.
类焦磷酸含有高效碳固定所需的内部膜结构。SAGA1 和 MITH1 这两种蛋白质是这些膜的生物生成和向类肾蕊基质输送碳酸氢盐所必需的。
{"title":"New light on pyrenoid membrane tubules","authors":"Jean-David Rochaix","doi":"10.1038/s41477-024-01857-y","DOIUrl":"https://doi.org/10.1038/s41477-024-01857-y","url":null,"abstract":"The pyrenoid contains internal membrane structures that are required for efficient carbon fixation. The two proteins SAGA1 and MITH1 are necessary for the biogenesis of these membranes and the delivery of bicarbonate to the pyrenoid matrix.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"246 1","pages":""},"PeriodicalIF":18.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAGA1 and MITH1 produce matrix-traversing membranes in the CO2-fixing pyrenoid SAGA1 和 MITH1 在固着二氧化碳的焦磷酸中产生穿越基质的膜
IF 18 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-15 DOI: 10.1038/s41477-024-01847-0
Jessica H. Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L. Ergun, Eric Franklin, Lianyong Wang, Simona Eicke, Yana Kazachkova, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E. Jinkerson, Samuel C. Zeeman, Alistair J. McCormick, Martin C. Jonikas

Approximately one-third of global CO2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii. Mutants deficient in SAGA1 or MITH1 lack matrix-traversing membranes and exhibit growth defects under CO2-limiting conditions. Expression of SAGA1 and MITH1 together in a heterologous system, the model plant Arabidopsis thaliana, produces matrix-traversing membranes. Both proteins localize to matrix-traversing membranes. SAGA1 binds to the major matrix component, Rubisco, and is necessary to initiate matrix-traversing membranes. MITH1 binds to SAGA1 and is necessary for extension of membranes through the matrix. Our data suggest that SAGA1 and MITH1 cause membranes to traverse the matrix by creating an adhesive interaction between the membrane and matrix. Our study identifies and characterizes key factors in the biogenesis of pyrenoid matrix-traversing membranes, demonstrates the importance of these membranes to pyrenoid function and marks a key milestone toward pyrenoid engineering into crops for improving yields.

全球大约三分之一的二氧化碳同化作用是由类火绒体完成的,类火绒体是一种液态细胞器,存在于大多数藻类和一些植物中。据推测,专门的类肾盂穿越膜可通过输送浓缩的二氧化碳来驱动类肾盂中的二氧化碳同化作用,但这些膜是如何穿越类肾盂基质的仍是未知数。在这里,我们展示了 SAGA1 和 MITH1 蛋白在模式藻类莱茵衣藻(Chlamydomonas reinhardtii)中使膜穿过类核基质的过程。缺乏 SAGA1 或 MITH1 的突变体缺乏穿越基质的膜,在二氧化碳限制条件下表现出生长缺陷。在异源系统(模式植物拟南芥)中同时表达 SAGA1 和 MITH1 可产生基质穿越膜。这两种蛋白质都定位在基质穿越膜上。SAGA1 与主要基质成分 Rubisco 结合,是启动基质穿越膜所必需的。MITH1 与 SAGA1 结合,是穿越基质的膜延伸所必需的。我们的数据表明,SAGA1 和 MITH1 通过在膜和基质之间产生粘附作用,使膜穿越基质。我们的研究确定并描述了类焦磷酸基质穿越膜的生物发生过程中的关键因素,证明了这些膜对类焦磷酸功能的重要性,标志着将类焦磷酸工程应用于作物以提高产量的一个重要里程碑。
{"title":"SAGA1 and MITH1 produce matrix-traversing membranes in the CO2-fixing pyrenoid","authors":"Jessica H. Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L. Ergun, Eric Franklin, Lianyong Wang, Simona Eicke, Yana Kazachkova, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E. Jinkerson, Samuel C. Zeeman, Alistair J. McCormick, Martin C. Jonikas","doi":"10.1038/s41477-024-01847-0","DOIUrl":"https://doi.org/10.1038/s41477-024-01847-0","url":null,"abstract":"<p>Approximately one-third of global CO<sub>2</sub> assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO<sub>2</sub> assimilation in the pyrenoid by delivering concentrated CO<sub>2</sub>, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga <i>Chlamydomonas reinhardtii</i>. Mutants deficient in <i>SAGA1</i> or <i>MITH1</i> lack matrix-traversing membranes and exhibit growth defects under CO<sub>2</sub>-limiting conditions. Expression of SAGA1 and MITH1 together in a heterologous system, the model plant <i>Arabidopsis thaliana</i>, produces matrix-traversing membranes. Both proteins localize to matrix-traversing membranes. SAGA1 binds to the major matrix component, Rubisco, and is necessary to initiate matrix-traversing membranes. MITH1 binds to SAGA1 and is necessary for extension of membranes through the matrix. Our data suggest that SAGA1 and MITH1 cause membranes to traverse the matrix by creating an adhesive interaction between the membrane and matrix. Our study identifies and characterizes key factors in the biogenesis of pyrenoid matrix-traversing membranes, demonstrates the importance of these membranes to pyrenoid function and marks a key milestone toward pyrenoid engineering into crops for improving yields.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"25 1","pages":""},"PeriodicalIF":18.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternate routes to gene functions. 基因功能的替代途径
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-11-01 DOI: 10.1038/s41477-024-01870-1
{"title":"Alternate routes to gene functions.","authors":"","doi":"10.1038/s41477-024-01870-1","DOIUrl":"https://doi.org/10.1038/s41477-024-01870-1","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 11","pages":"1605-1606"},"PeriodicalIF":15.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lazy sedimentation 懒散的沉淀。
IF 18 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-11-10 DOI: 10.1038/s41477-023-01577-9
Guillaume Tena
{"title":"Lazy sedimentation","authors":"Guillaume Tena","doi":"10.1038/s41477-023-01577-9","DOIUrl":"10.1038/s41477-023-01577-9","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"9 11","pages":"1778-1778"},"PeriodicalIF":18.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72210086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tRNA-modifying enzyme facilitates RNase P activity in Arabidopsis nuclei 一种tRNA修饰酶促进拟南芥细胞核中RNase P的活性
IF 18 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-11-09 DOI: 10.1038/s41477-023-01564-0
Mathilde Arrivé, Mathieu Bruggeman, Vasileios Skaltsogiannis, Léna Coudray, Yi-Fat Quan, Cédric Schelcher, Valérie Cognat, Philippe Hammann, Johana Chicher, Philippe Wolff, Anthony Gobert, Philippe Giegé
RNase P is the essential activity that performs the 5′ maturation of transfer RNA (tRNA) precursors. Beyond the ancestral form of RNase P containing a ribozyme, protein-only RNase P enzymes termed PRORP were identified in eukaryotes. In human mitochondria, PRORP forms a complex with two protein partners to become functional. In plants, although PRORP enzymes are active alone, we investigate their interaction network to identify potential tRNA maturation complexes. Here we investigate functional interactions involving the Arabidopsis nuclear RNase P PRORP2. We show, using an immuno-affinity strategy, that PRORP2 occurs in a complex with the tRNA methyl transferases TRM1A and TRM1B in vivo. Beyond RNase P, these enzymes can also interact with RNase Z. We show that TRM1A/TRM1B localize in the nucleus and find that their double knockout mutation results in a severe macroscopic phenotype. Using a combination of immuno-detections, mass spectrometry and a transcriptome-wide tRNA sequencing approach, we observe that TRM1A/TRM1B are responsible for the m22G26 modification of 70% of cytosolic tRNAs in vivo. We use the transcriptome wide tRNAseq approach as well as RNA blot hybridizations to show that RNase P activity is impaired in TRM1A/TRM1B mutants for specific tRNAs, in particular, tRNAs containing a m22G modification at position 26 that are strongly downregulated in TRM1A/TRM1B mutants. Altogether, results indicate that the m22G-adding enzymes TRM1A/TRM1B functionally cooperate with nuclear RNase P in vivo for the early steps of cytosolic tRNA biogenesis. This study shows that the tRNA-modifying enzymes TRM1A/TRM1B are essential to attain the steady-state pool of tRNAs and reveals how they functionally cooperate with RNase P in vivo for the early steps of tRNA biogenesis in Arabidopsis.
RNase P是进行转移RNA(tRNA)前体5′成熟的必需活性。除了含有核酶的RNase P的祖先形式外,在真核生物中还鉴定出了称为PRORP的纯蛋白质RNase P酶。在人类线粒体中,PRORP与两个蛋白质伴侣形成复合物,从而发挥功能。在植物中,尽管PRORP酶单独具有活性,但我们研究了它们的相互作用网络,以确定潜在的tRNA成熟复合物。在这里,我们研究了涉及拟南芥核RNase P PRORP2的功能相互作用。我们使用免疫亲和策略表明,PRORP2在体内与tRNA甲基转移酶TRM1A和TRM1B形成复合物。除了RNase P,这些酶还可以与RNase Z相互作用。我们发现TRM1A/TRM1B定位在细胞核中,并发现它们的双敲除突变导致严重的宏观表型。通过结合免疫检测、质谱和转录组范围的tRNA测序方法,我们观察到TRM1A/TRM1B负责体内70%胞质tRNA的m22G26修饰。我们使用转录组范围的tRNAseq方法以及RNA印迹杂交来表明,对于特定的tRNA,特别是在TRM1A/TRM1B突变体中强烈下调的26位含有m22G修饰的tRNAs,在TRM1A/4RM1B突变体中RNase P活性受损。总之,结果表明,m22G添加酶TRM1A/TRM1B在体内与核RNase P功能性地协同进行胞质tRNA生物发生的早期步骤。
{"title":"A tRNA-modifying enzyme facilitates RNase P activity in Arabidopsis nuclei","authors":"Mathilde Arrivé,&nbsp;Mathieu Bruggeman,&nbsp;Vasileios Skaltsogiannis,&nbsp;Léna Coudray,&nbsp;Yi-Fat Quan,&nbsp;Cédric Schelcher,&nbsp;Valérie Cognat,&nbsp;Philippe Hammann,&nbsp;Johana Chicher,&nbsp;Philippe Wolff,&nbsp;Anthony Gobert,&nbsp;Philippe Giegé","doi":"10.1038/s41477-023-01564-0","DOIUrl":"10.1038/s41477-023-01564-0","url":null,"abstract":"RNase P is the essential activity that performs the 5′ maturation of transfer RNA (tRNA) precursors. Beyond the ancestral form of RNase P containing a ribozyme, protein-only RNase P enzymes termed PRORP were identified in eukaryotes. In human mitochondria, PRORP forms a complex with two protein partners to become functional. In plants, although PRORP enzymes are active alone, we investigate their interaction network to identify potential tRNA maturation complexes. Here we investigate functional interactions involving the Arabidopsis nuclear RNase P PRORP2. We show, using an immuno-affinity strategy, that PRORP2 occurs in a complex with the tRNA methyl transferases TRM1A and TRM1B in vivo. Beyond RNase P, these enzymes can also interact with RNase Z. We show that TRM1A/TRM1B localize in the nucleus and find that their double knockout mutation results in a severe macroscopic phenotype. Using a combination of immuno-detections, mass spectrometry and a transcriptome-wide tRNA sequencing approach, we observe that TRM1A/TRM1B are responsible for the m22G26 modification of 70% of cytosolic tRNAs in vivo. We use the transcriptome wide tRNAseq approach as well as RNA blot hybridizations to show that RNase P activity is impaired in TRM1A/TRM1B mutants for specific tRNAs, in particular, tRNAs containing a m22G modification at position 26 that are strongly downregulated in TRM1A/TRM1B mutants. Altogether, results indicate that the m22G-adding enzymes TRM1A/TRM1B functionally cooperate with nuclear RNase P in vivo for the early steps of cytosolic tRNA biogenesis. This study shows that the tRNA-modifying enzymes TRM1A/TRM1B are essential to attain the steady-state pool of tRNAs and reveals how they functionally cooperate with RNase P in vivo for the early steps of tRNA biogenesis in Arabidopsis.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"9 12","pages":"2031-2041"},"PeriodicalIF":18.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71524251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urban heat stress triggering plant evolution 城市热应激引发植物进化
IF 18 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-11-09 DOI: 10.1038/s41477-023-01576-w
Catherine Walker
{"title":"Urban heat stress triggering plant evolution","authors":"Catherine Walker","doi":"10.1038/s41477-023-01576-w","DOIUrl":"10.1038/s41477-023-01576-w","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"9 11","pages":"1782-1782"},"PeriodicalIF":18.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71524252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lock and key 锁和钥匙。
IF 18 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-11-08 DOI: 10.1038/s41477-023-01571-1
Jun Lyu
{"title":"Lock and key","authors":"Jun Lyu","doi":"10.1038/s41477-023-01571-1","DOIUrl":"10.1038/s41477-023-01571-1","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"9 11","pages":"1779-1780"},"PeriodicalIF":18.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A COBRA for stomata 口腔科眼镜蛇。
IF 18 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-11-07 DOI: 10.1038/s41477-023-01572-0
Raphael Trösch
{"title":"A COBRA for stomata","authors":"Raphael Trösch","doi":"10.1038/s41477-023-01572-0","DOIUrl":"10.1038/s41477-023-01572-0","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"9 11","pages":"1781-1781"},"PeriodicalIF":18.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants 根木栓素片层的进化创新促成了种子植物的兴起。
IF 18 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2023-11-06 DOI: 10.1038/s41477-023-01555-1
Yu Su, Tao Feng, Chu-Bin Liu, Haodong Huang, Ya-Ling Wang, Xiaojuan Fu, Mei-Ling Han, Xuanhao Zhang, Xing Huang, Jia-Chen Wu, Tao Song, Hui Shen, Xianpeng Yang, Lin Xu, Shiyou Lü, Dai-Yin Chao
Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties. This study reports the striking discovery that a water-impermeable barrier known as suberin lamellae was first evolved in the common ancestor of seed plants and contributed to their evolutionary success.
石炭纪晚期,气候变得更冷、更干燥,种子植物取代蕨类植物成为优势植物群1,2。然而,推动种子植物成功的具体创新尚不清楚。在这里,我们报道木栓蛋白片层(SL)的出现有助于种子植物的生长。我们发现,卡斯帕尼带和SL维管屏障在不同的时间进化,前者起源于维管植物的最新共同祖先(MRCA),后者起源于种子植物的MRCA。我们的研究结果进一步表明,木栓素形成所需的大多数基因是通过种子植物MRCA中的基因复制产生的。我们发现SL在种子植物的MRCA中的出现通过防止中柱的水分损失来增强耐旱性。我们假设SL在干旱环境中比蕨类植物具有决定性的选择性优势,导致蕨类植物的减少和裸子植物的兴起。这项研究为种子植物的进化成功提供了见解,并对工程耐旱作物或蕨类植物品种具有启示。
{"title":"The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants","authors":"Yu Su,&nbsp;Tao Feng,&nbsp;Chu-Bin Liu,&nbsp;Haodong Huang,&nbsp;Ya-Ling Wang,&nbsp;Xiaojuan Fu,&nbsp;Mei-Ling Han,&nbsp;Xuanhao Zhang,&nbsp;Xing Huang,&nbsp;Jia-Chen Wu,&nbsp;Tao Song,&nbsp;Hui Shen,&nbsp;Xianpeng Yang,&nbsp;Lin Xu,&nbsp;Shiyou Lü,&nbsp;Dai-Yin Chao","doi":"10.1038/s41477-023-01555-1","DOIUrl":"10.1038/s41477-023-01555-1","url":null,"abstract":"Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties. This study reports the striking discovery that a water-impermeable barrier known as suberin lamellae was first evolved in the common ancestor of seed plants and contributed to their evolutionary success.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"9 12","pages":"1968-1977"},"PeriodicalIF":18.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Plants
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1