Mechanism insights into metal-organic framework-derived carbon materials activating periodate for p-chlorophenol removal: The role of S and Fe co-doping
Wenjun Xiao , Ao Chen , Min Cheng , Weiping Xiong , Yang Liu , Jun Wang , Guangfu Wang , Gaoxia Zhang , Ling Li , Hongda Liu , Qingkai Shi
{"title":"Mechanism insights into metal-organic framework-derived carbon materials activating periodate for p-chlorophenol removal: The role of S and Fe co-doping","authors":"Wenjun Xiao , Ao Chen , Min Cheng , Weiping Xiong , Yang Liu , Jun Wang , Guangfu Wang , Gaoxia Zhang , Ling Li , Hongda Liu , Qingkai Shi","doi":"10.1016/j.watres.2024.122735","DOIUrl":null,"url":null,"abstract":"<div><div>Periodate (PI, IO<sub>4</sub><sup>−</sup>)-based advanced oxidation processes (AOPs) provide an economical and sustainable approach to alleviate water pollution challenges. Developing efficient and stable activators for PI is the focus of current research. Herein, S/Fe-co-doped magnetic porous carbon material (S/Fe-ZIF-950) was prepared by introducing exogenous S atoms using Fe-doped zeolitic imidazolate framework-8 (Fe-ZIF-8) as a precursor, which showed the most superior performance (100 % within 10 min) in activating PI to remove p-chlorophenol (4-CP). Quenching tests, electron spin resonance and electrochemical characterizations revealed that IO<sub>3</sub>·, <sup>1</sup>O<sub>2</sub>, ·O<sub>2</sub><sup>−</sup> dominated the 4-CP degradation process with Fe<sub>3</sub>C and ZnS as the main active sites. The synergistic effect of S and Fe was the main reason for the enhanced degradation performance of 4-CP in S/Fe-ZIF-950/PI system, among which the reducing S<sup>2−</sup> could effectively promote the regeneration of Fe(Ⅱ), thus facilitating the continuous generation of active species. Combined with LC-MS results and density functional theory (DFT) calculations, possible degradation routes of 4-CP in the S/Fe-ZIF-950/PI system were presented. Moreover, toxicity assessment showed that the S/Fe-ZIF-950/PI system exhibited low biotoxicity and no toxic iodine by-products were formed. In addition, S/Fe-ZIF-950/PI system demonstrated excellent activity, good stability, outstanding reusability and durability in a variety of complex water environments. This study investigated the activation mechanism of S/Fe-co-doped porous carbon materials on PI, which shed a new light on the catalytic activation of PI by heteroatom-doped Fe-loaded carbon-based materials.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122735"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016348","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Periodate (PI, IO4−)-based advanced oxidation processes (AOPs) provide an economical and sustainable approach to alleviate water pollution challenges. Developing efficient and stable activators for PI is the focus of current research. Herein, S/Fe-co-doped magnetic porous carbon material (S/Fe-ZIF-950) was prepared by introducing exogenous S atoms using Fe-doped zeolitic imidazolate framework-8 (Fe-ZIF-8) as a precursor, which showed the most superior performance (100 % within 10 min) in activating PI to remove p-chlorophenol (4-CP). Quenching tests, electron spin resonance and electrochemical characterizations revealed that IO3·, 1O2, ·O2− dominated the 4-CP degradation process with Fe3C and ZnS as the main active sites. The synergistic effect of S and Fe was the main reason for the enhanced degradation performance of 4-CP in S/Fe-ZIF-950/PI system, among which the reducing S2− could effectively promote the regeneration of Fe(Ⅱ), thus facilitating the continuous generation of active species. Combined with LC-MS results and density functional theory (DFT) calculations, possible degradation routes of 4-CP in the S/Fe-ZIF-950/PI system were presented. Moreover, toxicity assessment showed that the S/Fe-ZIF-950/PI system exhibited low biotoxicity and no toxic iodine by-products were formed. In addition, S/Fe-ZIF-950/PI system demonstrated excellent activity, good stability, outstanding reusability and durability in a variety of complex water environments. This study investigated the activation mechanism of S/Fe-co-doped porous carbon materials on PI, which shed a new light on the catalytic activation of PI by heteroatom-doped Fe-loaded carbon-based materials.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.