Sakin Satter, Florian Bender, Nicholas Post, Antonio J. Ricco, Fabien Josse
{"title":"Analysis of Multivariable Sensor Responses to Multi-Analyte Gas Samples in the Presence of Interferents and Humidity","authors":"Sakin Satter, Florian Bender, Nicholas Post, Antonio J. Ricco, Fabien Josse","doi":"10.1021/acssensors.4c02200","DOIUrl":null,"url":null,"abstract":"This work presents an adaptive sensor signal-processing approach to enable quantification, using a single gas sensor or a small sensor array, of multianalyte mixtures of aromatic hydrocarbons in the presence of various interferents and humidity for environmental-monitoring applications. Dynamic sensor responses are analyzed by extracting multivariable sensing parameters to provide necessary sensitivity and selectivity. This is achieved by integrating the Levenberg–Marquardt-modified, exponentially weighted, recursive-least-squares-estimation (LM-modified EW-RLSE) algorithm and principal-component analysis (PCA). Achieving measured detection limits as low as 3 μg/L (≤1 ppm by volume) for 6 target analytes, the system exhibits excellent PCA cluster separation for all analytes in the mixtures, with reliable identification and accurate quantification, even in the presence of various interferents. Concentration errors of approximately ±5% are obtained for mixtures containing up to 6 BTEX compounds (including chemical isomers) and up to 4 interferents. Additionally, the study investigates the impact of humidity on the polymer/plasticizer-coated shear-horizontal surface acoustic wave (SH-SAW) sensors, demonstrating accurate concentration estimation in a relative humidity range from dry nitrogen to 65%. This sensing-and-multivariate-signal-processing approach is a promising candidate for reliable environmental monitoring in real-world applications.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02200","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an adaptive sensor signal-processing approach to enable quantification, using a single gas sensor or a small sensor array, of multianalyte mixtures of aromatic hydrocarbons in the presence of various interferents and humidity for environmental-monitoring applications. Dynamic sensor responses are analyzed by extracting multivariable sensing parameters to provide necessary sensitivity and selectivity. This is achieved by integrating the Levenberg–Marquardt-modified, exponentially weighted, recursive-least-squares-estimation (LM-modified EW-RLSE) algorithm and principal-component analysis (PCA). Achieving measured detection limits as low as 3 μg/L (≤1 ppm by volume) for 6 target analytes, the system exhibits excellent PCA cluster separation for all analytes in the mixtures, with reliable identification and accurate quantification, even in the presence of various interferents. Concentration errors of approximately ±5% are obtained for mixtures containing up to 6 BTEX compounds (including chemical isomers) and up to 4 interferents. Additionally, the study investigates the impact of humidity on the polymer/plasticizer-coated shear-horizontal surface acoustic wave (SH-SAW) sensors, demonstrating accurate concentration estimation in a relative humidity range from dry nitrogen to 65%. This sensing-and-multivariate-signal-processing approach is a promising candidate for reliable environmental monitoring in real-world applications.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.