Embedding Plate‐Like Pyrochlore in Perovskite Phase to Enhance Energy Storage Performance of BNT‐Based Ceramic Capacitors

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-11-09 DOI:10.1002/aenm.202403926
Simin Wang, Jin Qian, Guanglong Ge, Faqiang Zhang, Fei Yan, Jinfeng Lin, Luomeng Tang, Menghao Yang, Zhongbin Pan, Xiao Wei, Bo Shen, Zhifu Liu, Jiwei Zhai
{"title":"Embedding Plate‐Like Pyrochlore in Perovskite Phase to Enhance Energy Storage Performance of BNT‐Based Ceramic Capacitors","authors":"Simin Wang, Jin Qian, Guanglong Ge, Faqiang Zhang, Fei Yan, Jinfeng Lin, Luomeng Tang, Menghao Yang, Zhongbin Pan, Xiao Wei, Bo Shen, Zhifu Liu, Jiwei Zhai","doi":"10.1002/aenm.202403926","DOIUrl":null,"url":null,"abstract":"Next‐generation electrical and electronic systems rely on the development of efficient energy‐storage dielectric ceramic capacitors. However, achieving a synergistic enhancement in the polarization and in the breakdown field strength (<jats:italic>E</jats:italic><jats:sub>b</jats:sub>) presents a considerable challenge. Herein, a heterogeneous combination strategy involving embedding a high <jats:italic>E</jats:italic><jats:sub>b</jats:sub> plate‐like pyrochlore phase in a high‐polarization perovskite phase is proposed. The embedded plate‐like pyrochlore increases the breakdown field strength and promotes the dynamic polarization response. Meanwhile, the strong spin–orbit coupling effect of the 5d electrons is conducive to the maintenance of the high polarization value of the perovskite. Consequently, the prepared multilayer ceramic capacitor (MLCC) exhibits an ultrahigh <jats:italic>E</jats:italic><jats:sub>b</jats:sub> and a high polarization. More specifically, an energy storage density (<jats:italic>W</jats:italic><jats:sub>rec</jats:sub>) of 14.9 J cm<jats:sup>−3</jats:sup> with an efficiency of up to 93.4% is achieved for the optimized pyrochlore/perovskite phase. Furthermore, the MLCCs also exhibits an <jats:italic>W</jats:italic><jats:sub>rec</jats:sub> of ≈ 7.7 J cm<jats:sup>−3</jats:sup> ± 4.5% in the temperature range of −50–180 °C. Therefore, this heterogeneous combination strategy therefore provides a simple and effective method for improving the energy‐storage performances of dielectric ceramic capacitors.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403926","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Next‐generation electrical and electronic systems rely on the development of efficient energy‐storage dielectric ceramic capacitors. However, achieving a synergistic enhancement in the polarization and in the breakdown field strength (Eb) presents a considerable challenge. Herein, a heterogeneous combination strategy involving embedding a high Eb plate‐like pyrochlore phase in a high‐polarization perovskite phase is proposed. The embedded plate‐like pyrochlore increases the breakdown field strength and promotes the dynamic polarization response. Meanwhile, the strong spin–orbit coupling effect of the 5d electrons is conducive to the maintenance of the high polarization value of the perovskite. Consequently, the prepared multilayer ceramic capacitor (MLCC) exhibits an ultrahigh Eb and a high polarization. More specifically, an energy storage density (Wrec) of 14.9 J cm−3 with an efficiency of up to 93.4% is achieved for the optimized pyrochlore/perovskite phase. Furthermore, the MLCCs also exhibits an Wrec of ≈ 7.7 J cm−3 ± 4.5% in the temperature range of −50–180 °C. Therefore, this heterogeneous combination strategy therefore provides a simple and effective method for improving the energy‐storage performances of dielectric ceramic capacitors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在过氧化物相中嵌入板状火烧体,提高基于 BNT 的陶瓷电容器的储能性能
下一代电气和电子系统依赖于高效储能电介质陶瓷电容器的开发。然而,实现极化和击穿场强(Eb)的协同增强是一个相当大的挑战。在此,我们提出了一种异质组合策略,即在高极化包晶石相中嵌入高 Eb 板状火成岩相。嵌入的板状火成相增加了击穿场强,促进了动态极化响应。同时,5d 电子的强自旋轨道耦合效应有利于维持包晶的高极化值。因此,制备的多层陶瓷电容器(MLCC)具有超高的 Eb 值和极化值。更具体地说,经过优化的热绿核/过氧化物相的储能密度(Wrec)达到了 14.9 J cm-3,效率高达 93.4%。此外,在 -50-180 °C 的温度范围内,MLCC 的 Wrec 值也达到了 ≈ 7.7 J cm-3 ± 4.5%。因此,这种异质组合策略为提高电介质陶瓷电容器的储能性能提供了一种简单而有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Rational Design of Two Well‐Compatible Dimeric Acceptors Through Regulating Chalcogen‐Substituted Conjugated Backbone Enable Ternary Organic Solar Cells with 19.4% Efficiency Activation of Hidden Catalytic Sites in 2D Basal Plane via p–n Heterojunction Interface Engineering Toward Efficient Oxygen Evolution Reaction Oriented and Continuous Phase Epitaxy Enabled by A Highly Dendrite-Resistant Plane Toward Super-High Areal Capacity Zinc Metal Batteries CeO2‐Accelerated Surface Reconstruction of CoSe2 Nanoneedle Forms Active CeO2@CoOOH Interface to Boost Oxygen Evolution Reaction for Water Splitting Toward Flexible and Stretchable Organic Solar Cells: A Comprehensive Review of Transparent Conductive Electrodes, Photoactive Materials, and Device Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1