Haoyang Pan, Yangyu Dong, Yudi Wang, Jie Li, Yajie Zhang, Song Gao, Yongfeng Wang, Shimin Hou
{"title":"Conformational Control of σ-Interference Effects in the Conductance of Permethylated Oligosilanes","authors":"Haoyang Pan, Yangyu Dong, Yudi Wang, Jie Li, Yajie Zhang, Song Gao, Yongfeng Wang, Shimin Hou","doi":"10.1021/jacs.4c12676","DOIUrl":null,"url":null,"abstract":"As silicon-based integrated circuits continue to shrink, their molecular characteristics become more pronounced. However, the structure–property relationship of silicon-based molecular junctions remains to be elucidated. Here, an intuitive explanation of the effects of backbone dihedral angles on transport properties in permethylated oligosilanes is presented employing the Ladder C model Hamiltonian combined with nonequilibrium Green’s function formalism. Backbone dihedral angles modulate quantum interference (QI), resulting in the change of the transmission coefficient at the Fermi energy (E<sub>F</sub>) by up to 6 orders of magnitude in Si<sub>4</sub>Me<sub>10</sub>. Because the types of QI (constructive or destructive) between molecular conductance orbitals (MCOs) are unchanged, the relative magnitudes of contributions from QI are critical. This quantitative aspect of QI is often neglected in previous theoretical studies. Small backbone dihedral angles lead to localized MCOs near E<sub>F</sub> and delocalized MCOs further away from E<sub>F</sub>. As a result, the constructive QI between the MCOs near E<sub>F</sub> is suppressed, while the destructive QI between other MCOs is enhanced. This insight opens an avenue to harness QI to realize ultrainsulating molecular devices.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12676","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As silicon-based integrated circuits continue to shrink, their molecular characteristics become more pronounced. However, the structure–property relationship of silicon-based molecular junctions remains to be elucidated. Here, an intuitive explanation of the effects of backbone dihedral angles on transport properties in permethylated oligosilanes is presented employing the Ladder C model Hamiltonian combined with nonequilibrium Green’s function formalism. Backbone dihedral angles modulate quantum interference (QI), resulting in the change of the transmission coefficient at the Fermi energy (EF) by up to 6 orders of magnitude in Si4Me10. Because the types of QI (constructive or destructive) between molecular conductance orbitals (MCOs) are unchanged, the relative magnitudes of contributions from QI are critical. This quantitative aspect of QI is often neglected in previous theoretical studies. Small backbone dihedral angles lead to localized MCOs near EF and delocalized MCOs further away from EF. As a result, the constructive QI between the MCOs near EF is suppressed, while the destructive QI between other MCOs is enhanced. This insight opens an avenue to harness QI to realize ultrainsulating molecular devices.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.