Mechanistic Insights into the cis-Selective Catalytic Ring-Opening Metathesis Polymerization

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-09 DOI:10.1021/jacs.4c13063
Indradip Mandal, Andreas F. M. Kilbinger
{"title":"Mechanistic Insights into the cis-Selective Catalytic Ring-Opening Metathesis Polymerization","authors":"Indradip Mandal, Andreas F. M. Kilbinger","doi":"10.1021/jacs.4c13063","DOIUrl":null,"url":null,"abstract":"<i>Cis</i>-selective ring-opening metathesis polymerization (ROMP) with the commercial Grubbs “nitrato catalyst” has shown promise for synthesizing stereoregular materials, but it comes with the drawback of losing control over the molecular weight due to the poor initiation rate of the catalyst and the need for stoichiometric ruthenium complex loading. To address these issues, we developed a chain transfer polymerization method that allows for the catalytic synthesis of polymers while controlling the degree of polymerization. This allowed us to produce shorter polymers with exceptional chain-end control. Analysis of the polymers revealed a novel double monomer addition mechanism for this catalyst. MALDI-ToF mass spectrometric measurements showed that when using small monomers like norbornene, the polymer chains contained only odd numbers of monomers. In contrast, the polymerization of norbornene-imide-type monomers shows a major distribution with odd numbers of monomers along with a minor distribution of even numbers. This unique distribution of polymer chain types had not been previously observed in ROMP. We explain this phenomenon by the chiral nature of the catalyst that yields two isomeric catalytic species with dissimilar reactivities toward monomer and chain transfer agents.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cis-selective ring-opening metathesis polymerization (ROMP) with the commercial Grubbs “nitrato catalyst” has shown promise for synthesizing stereoregular materials, but it comes with the drawback of losing control over the molecular weight due to the poor initiation rate of the catalyst and the need for stoichiometric ruthenium complex loading. To address these issues, we developed a chain transfer polymerization method that allows for the catalytic synthesis of polymers while controlling the degree of polymerization. This allowed us to produce shorter polymers with exceptional chain-end control. Analysis of the polymers revealed a novel double monomer addition mechanism for this catalyst. MALDI-ToF mass spectrometric measurements showed that when using small monomers like norbornene, the polymer chains contained only odd numbers of monomers. In contrast, the polymerization of norbornene-imide-type monomers shows a major distribution with odd numbers of monomers along with a minor distribution of even numbers. This unique distribution of polymer chain types had not been previously observed in ROMP. We explain this phenomenon by the chiral nature of the catalyst that yields two isomeric catalytic species with dissimilar reactivities toward monomer and chain transfer agents.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对顺式选择性催化开环茂金属聚合反应的机理认识
使用商用格拉布斯 "硝基催化剂 "进行顺式选择性开环偏聚(ROMP)已显示出合成立体配位材料的前景,但它也有缺点,即由于催化剂的引发率较低以及需要按比例添加钌络合物,因此无法控制分子量。为了解决这些问题,我们开发了一种链转移聚合方法,可以在控制聚合度的同时催化合成聚合物。这样,我们就能生产出链端控制出色的较短聚合物。对聚合物的分析表明,这种催化剂具有新颖的双单体加成机制。MALDI-ToF 质谱测量显示,在使用降冰片烯等小单体时,聚合物链只含有奇数单体。与此相反,降冰片烯-酰亚胺型单体的聚合则主要分布在奇数单体和偶数单体之间。这种聚合物链类型的独特分布以前从未在 ROMP 中观察到过。我们用催化剂的手性来解释这种现象,因为手性催化剂会产生两种对单体和链转移剂具有不同反应活性的异构催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
4hJCHOCH Spin Coupling in a Lewisx Trisaccharide as Evidence of Inter-Residue C-H···O Hydrogen Bonding in Aqueous Solution. Cobalt Nitride-Implanted PtCo Intermetallic Nanocatalysts for Ultrahigh Fuel Cell Cathode Performance. A Fully Saturated Covalent Organic Framework. Efficient Fluorocarbons Capture Using Radical-Containing Covalent Triazine Frameworks. Fluence-Dependent Photoinduced Charge Transfer Dynamics in Polymer-Wrapped Semiconducting Single-Walled Carbon Nanotubes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1