{"title":"A Bottom-Up Approach to Assemble Cell-Laden Biomineralized Nanofiber Mats into 3D Multilayer Periosteum Mimics for Bone Regeneration","authors":"Luoqiang Tian, Xiangrong Zhao, Fuying Chen, Fengxin Zhao, Keting Liu, Jiajun Liu, Qiwen Wan, Xiangfeng Li, Xiangdong Zhu, Xuening Chen, Xingdong Zhang","doi":"10.1021/acs.nanolett.4c02561","DOIUrl":null,"url":null,"abstract":"The creation of complex multilayer periosteal graft structures is challenging. This study introduced a novel bottom-up approach to assemble cell-laden nanofiber mats into a three-dimensional (3D) multilayer periosteum mimic, successfully replicating the hierarchical complexity of the natural periosteum. These nanofiber mats, which were fabricated by electrospinning, surface modification, and stimulated body fluid (SBF) immersion, are composed of nanoscale polycaprolactone (PCL) fibers coated with a mineralized collagen layer along the fiber orientation. They closely resembled the natural periosteal matrix, thereby promoting osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The biomimetic periosteum, constructed via layer-by-layer assembly, offered advantages such as a multilayer nanofibrous structure, controlled cell distribution, a reservoir for osteoprogenitors, and enhanced pro-osteogenic potential. The rat calvarial bone defect model confirmed its potent bone repair capacity. This study presents an efficient approach to construct tissue-engineered periosteum mimics, holding promise for serving as periosteal grafts in orthopedic applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02561","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The creation of complex multilayer periosteal graft structures is challenging. This study introduced a novel bottom-up approach to assemble cell-laden nanofiber mats into a three-dimensional (3D) multilayer periosteum mimic, successfully replicating the hierarchical complexity of the natural periosteum. These nanofiber mats, which were fabricated by electrospinning, surface modification, and stimulated body fluid (SBF) immersion, are composed of nanoscale polycaprolactone (PCL) fibers coated with a mineralized collagen layer along the fiber orientation. They closely resembled the natural periosteal matrix, thereby promoting osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The biomimetic periosteum, constructed via layer-by-layer assembly, offered advantages such as a multilayer nanofibrous structure, controlled cell distribution, a reservoir for osteoprogenitors, and enhanced pro-osteogenic potential. The rat calvarial bone defect model confirmed its potent bone repair capacity. This study presents an efficient approach to construct tissue-engineered periosteum mimics, holding promise for serving as periosteal grafts in orthopedic applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.