Pavel V. Kolesnichenko, Lukas Wittenbecher, Qianhui Zhang, Run Yan Teh, Chandni Babu, Michael S. Fuhrer, Anders Mikkelsen, Donatas Zigmantas
{"title":"Sub-100 fs Formation of Dark Excitons in Monolayer WS2","authors":"Pavel V. Kolesnichenko, Lukas Wittenbecher, Qianhui Zhang, Run Yan Teh, Chandni Babu, Michael S. Fuhrer, Anders Mikkelsen, Donatas Zigmantas","doi":"10.1021/acs.nanolett.4c03807","DOIUrl":null,"url":null,"abstract":"Two-dimensional semiconducting transition metal dichalcogenides are promising materials for optoelectronic applications due to their strongly bound excitons. While bright excitons have been thoroughly scrutinized, dark excitons have been much less investigated, as they are not directly observable with far-field spectroscopy. However, with their nonzero momenta, dark excitons are significant for applications requiring long-range transport or coupling to external fields. We access such dark excitons in WS<sub>2</sub> monolayer using transient photoemission electron microscopy with subdiffraction limited spatial resolution (75 nm) and exceptionally high temporal resolution (13 fs). Image time series of the monolayer are recorded at several different fluences. We directly observe the ultrafast formation of dark K-Λ excitons occurring within 14–50 fs and follow their subsequent picosecond decay. We distinguish exciton dynamics between the monolayer’s interior and edges and conclude that the picosecond-scale evolution of dark excitations is defect-mediated while intervalley scattering is not affected by the defects.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03807","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional semiconducting transition metal dichalcogenides are promising materials for optoelectronic applications due to their strongly bound excitons. While bright excitons have been thoroughly scrutinized, dark excitons have been much less investigated, as they are not directly observable with far-field spectroscopy. However, with their nonzero momenta, dark excitons are significant for applications requiring long-range transport or coupling to external fields. We access such dark excitons in WS2 monolayer using transient photoemission electron microscopy with subdiffraction limited spatial resolution (75 nm) and exceptionally high temporal resolution (13 fs). Image time series of the monolayer are recorded at several different fluences. We directly observe the ultrafast formation of dark K-Λ excitons occurring within 14–50 fs and follow their subsequent picosecond decay. We distinguish exciton dynamics between the monolayer’s interior and edges and conclude that the picosecond-scale evolution of dark excitations is defect-mediated while intervalley scattering is not affected by the defects.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.