Lu Tang, Yue Yin, Yuqi Cao, Hening Liu, Guangchao Qing, Cong Fu, Zixuan Li, Yuanbo Zhu, Weijie Shu, Shun He, Jifan Gao, Yi Zhang, Zihan Wang, Jianlan Bu, Xuejing Li, Mengliang Zhu, Xing-Jie Liang, Wei Wang
{"title":"Bioorthogonal Chemistry-Guided Inhalable Nanoprodrug to Circumvent Cisplatin Resistance in Orthotopic Nonsmall Cell Lung Cancer","authors":"Lu Tang, Yue Yin, Yuqi Cao, Hening Liu, Guangchao Qing, Cong Fu, Zixuan Li, Yuanbo Zhu, Weijie Shu, Shun He, Jifan Gao, Yi Zhang, Zihan Wang, Jianlan Bu, Xuejing Li, Mengliang Zhu, Xing-Jie Liang, Wei Wang","doi":"10.1021/acsnano.4c10947","DOIUrl":null,"url":null,"abstract":"Pulmonary delivery of anticancer therapeutics has shown encouraging performance in treating nonsmall cell lung cancer (NSCLC), which is characterized by high aggressiveness and poor prognosis. Cisplatin, a key member of the family of DNA alkylating agents, is extensively employed during NSCLC therapy. However, the development of chemoresistance and the occurrence of side effects severely impede the long-term application of cisplatin-based chemotherapies. Herein, we propose a meaningful strategy to precisely treat cisplatin-resistant NSCLC based on the combination of bioorthogonal chemistry with an inhalation approach. Ethacraplatin (EA-Pt), a platinum prodrug (IV), was synthesized and encapsulated in nitric oxide (NO)-containing micelles to overcome cisplatin chemoresistance. By further modifying bioorthogonal molecules in this nanoplatform (EA-Pt@M<sub>DBCO</sub>), an improved targeting performance toward pulmonary cancerous regions is achieved after prelabeling with azide via inhalation. Upon entering acidic cancer cells, EA-Pt is swiftly released due to the pH sensitivity of bioorthogonal micelles, which enables its bifunctions to inhibit glutathione <i>S</i>-transferase activity and deplete intracellular glutathione, eventually reversing cisplatin resistance. Moreover, the released NO also improves the overall therapeutic outcome against NSCLC. Consequently, inhalable EA-Pt@M<sub>DBCO</sub> prelabeled by azide effectively inhibits the progression of cisplatin-resistant orthotopic NSCLC, offering a feasible nanostrategy to expand the treatment options for NSCLC.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"95 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10947","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pulmonary delivery of anticancer therapeutics has shown encouraging performance in treating nonsmall cell lung cancer (NSCLC), which is characterized by high aggressiveness and poor prognosis. Cisplatin, a key member of the family of DNA alkylating agents, is extensively employed during NSCLC therapy. However, the development of chemoresistance and the occurrence of side effects severely impede the long-term application of cisplatin-based chemotherapies. Herein, we propose a meaningful strategy to precisely treat cisplatin-resistant NSCLC based on the combination of bioorthogonal chemistry with an inhalation approach. Ethacraplatin (EA-Pt), a platinum prodrug (IV), was synthesized and encapsulated in nitric oxide (NO)-containing micelles to overcome cisplatin chemoresistance. By further modifying bioorthogonal molecules in this nanoplatform (EA-Pt@MDBCO), an improved targeting performance toward pulmonary cancerous regions is achieved after prelabeling with azide via inhalation. Upon entering acidic cancer cells, EA-Pt is swiftly released due to the pH sensitivity of bioorthogonal micelles, which enables its bifunctions to inhibit glutathione S-transferase activity and deplete intracellular glutathione, eventually reversing cisplatin resistance. Moreover, the released NO also improves the overall therapeutic outcome against NSCLC. Consequently, inhalable EA-Pt@MDBCO prelabeled by azide effectively inhibits the progression of cisplatin-resistant orthotopic NSCLC, offering a feasible nanostrategy to expand the treatment options for NSCLC.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.