Flexible Piezoelectric Energy Harvesters with Mechanoluminescence for Mechanical Energy Harvesting and Stress Visualization Sensing

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-11 DOI:10.1002/adfm.202412507
Xueting Fu, Yongquan Cao, Xinyue Song, Renbing Sun, Hai Jiang, Peng Du, Dengfeng Peng, Laihui Luo
{"title":"Flexible Piezoelectric Energy Harvesters with Mechanoluminescence for Mechanical Energy Harvesting and Stress Visualization Sensing","authors":"Xueting Fu, Yongquan Cao, Xinyue Song, Renbing Sun, Hai Jiang, Peng Du, Dengfeng Peng, Laihui Luo","doi":"10.1002/adfm.202412507","DOIUrl":null,"url":null,"abstract":"Flexible piezoelectric energy harvesters (FPEHs) have wide applications in mechanical energy harvesting, portable device driving, and piezoelectric sensors. However, the poor output performance of piezoelectric energy harvesters and the intrinsic shortcoming of piezoelectric sensors that can only detect dynamic pressure limit their further applications. BaTiO<jats:sub>3</jats:sub> (BT) and PVDF are deposited on the glass fiber electronic cloth (GFEC) by impregnation and spin‐coating methods, respectively, to form BT‐GFEC/PVDF piezoelectric composite films. A mixed solution of mechanoluminescence (ML) particles ZnS:Cu and PDMS are used as the encapsulation layer to construct a high‐performance ML‐FPEH with self‐powered electrical and optical dual‐mode response characteristics. Due to the interconnection structure of the piezoelectric films, the prepared ML‐FPEH illustrates a high effective energy harvesting performance (≈58 V, ≈43.56 µW cm<jats:sup>−2</jats:sup>). It can also effectively harvest mechanical energy from human activities. More importantly, ML‐FPEH can sense stress distribution of hand‐writing via ML to achieve stress visualization, making up for the shortcomings of piezoelectric sensors. This work provides a new strategy for endowing FPEH with dual‐mode sensing and energy harvesting.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202412507","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible piezoelectric energy harvesters (FPEHs) have wide applications in mechanical energy harvesting, portable device driving, and piezoelectric sensors. However, the poor output performance of piezoelectric energy harvesters and the intrinsic shortcoming of piezoelectric sensors that can only detect dynamic pressure limit their further applications. BaTiO3 (BT) and PVDF are deposited on the glass fiber electronic cloth (GFEC) by impregnation and spin‐coating methods, respectively, to form BT‐GFEC/PVDF piezoelectric composite films. A mixed solution of mechanoluminescence (ML) particles ZnS:Cu and PDMS are used as the encapsulation layer to construct a high‐performance ML‐FPEH with self‐powered electrical and optical dual‐mode response characteristics. Due to the interconnection structure of the piezoelectric films, the prepared ML‐FPEH illustrates a high effective energy harvesting performance (≈58 V, ≈43.56 µW cm−2). It can also effectively harvest mechanical energy from human activities. More importantly, ML‐FPEH can sense stress distribution of hand‐writing via ML to achieve stress visualization, making up for the shortcomings of piezoelectric sensors. This work provides a new strategy for endowing FPEH with dual‐mode sensing and energy harvesting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于机械能收集和应力可视化传感的带机械发光功能的柔性压电能量收集器
柔性压电能量收集器(FPEHs)在机械能收集、便携式设备驱动和压电传感器方面有着广泛的应用。然而,压电能量收集器的输出性能较差,而且压电传感器只能检测动态压力,这些固有缺陷限制了其进一步应用。通过浸渍法和旋涂法将 BaTiO3(BT)和 PVDF 分别沉积在玻璃纤维电子布(GFEC)上,形成 BT-GFEC/PVDF 压电复合薄膜。利用机械发光(ML)粒子 ZnS:Cu 和 PDMS 的混合溶液作为封装层,构建了具有自供电电气和光学双模响应特性的高性能 ML-FPEH。由于压电薄膜的互连结构,所制备的 ML-FPEH 具有很高的有效能量收集性能(≈58 V,≈43.56 µW cm-2)。它还能有效收集人类活动产生的机械能。更重要的是,ML-FPEH 可通过 ML 感知手写的应力分布,实现应力可视化,弥补了压电传感器的不足。这项工作为赋予 FPEH 双模传感和能量收集功能提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Delocalized Polarons in Diketopyrrolopyrrole‐Based Conjugated Polymers: Implications for Near‐Infrared Electrochromism and Beyond Bioinspired Passive Cooling Hydrogel for Visualizing Hygroscopicity and Desorption Process Multifunctional Electromagnetic Responsive Porous Materials Synthesized by Freeze Casting: Principles, Progress, and Prospects Extremely Ultrahigh Stretchable Starch‐Based Hydrogels with Continuous Hydrogen Bonding Zeolite‐Based “Particle Board” Membranes for Rapid and Selective Hydrogen Permeation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1