Video-Based Deception Detection via Capsule Network With Channel-Wise Attention and Supervised Contrastive Learning

Shuai Gao;Lin Chen;Yuancheng Fang;Shengbing Xiao;Hui Li;Xuezhi Yang;Rencheng Song
{"title":"Video-Based Deception Detection via Capsule Network With Channel-Wise Attention and Supervised Contrastive Learning","authors":"Shuai Gao;Lin Chen;Yuancheng Fang;Shengbing Xiao;Hui Li;Xuezhi Yang;Rencheng Song","doi":"10.1109/OJCS.2024.3485688","DOIUrl":null,"url":null,"abstract":"Deception detection is essential for protecting the public interest and maintaining social order. Its application in various fields helps to establish a safer and trustworthy social environment. This study focuses on the problem of deception detection in videos and proposes a visual deception detection method based on a capsule network (DDCapsNet). The DDCapsNet model predicts deception classification using the fusion of facial expression features and video-based heart rate feature via a channel attention mechanism. Supervised contrastive learning is further introduced to enhance the generalization ability of the DDCapsNet. The proposed model is evaluated on a self-collected dataset (physiological-assisted visual deception detection dataset, PV3D) and the public Bag-of-Lies (BOL) dataset, respectively. The results show that DDCapsNet outperforms the unimodal system and other state-of-the-art (SOTA) methods, where the ACC reaches 77.97% and the AUC reaches 78.45% on PV3D, and the ACC reaches 73.19% and the AUC reaches 72.78% on BOL dataset.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"5 ","pages":"660-670"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10734158","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10734158/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deception detection is essential for protecting the public interest and maintaining social order. Its application in various fields helps to establish a safer and trustworthy social environment. This study focuses on the problem of deception detection in videos and proposes a visual deception detection method based on a capsule network (DDCapsNet). The DDCapsNet model predicts deception classification using the fusion of facial expression features and video-based heart rate feature via a channel attention mechanism. Supervised contrastive learning is further introduced to enhance the generalization ability of the DDCapsNet. The proposed model is evaluated on a self-collected dataset (physiological-assisted visual deception detection dataset, PV3D) and the public Bag-of-Lies (BOL) dataset, respectively. The results show that DDCapsNet outperforms the unimodal system and other state-of-the-art (SOTA) methods, where the ACC reaches 77.97% and the AUC reaches 78.45% on PV3D, and the ACC reaches 73.19% and the AUC reaches 72.78% on BOL dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过胶囊网络进行基于视频的欺骗检测,并辅以渠道关注和监督对比学习
欺骗检测对于保护公众利益和维护社会秩序至关重要。它在各个领域的应用有助于建立一个更加安全和可信的社会环境。本研究聚焦于视频中的欺骗检测问题,提出了一种基于胶囊网络的视觉欺骗检测方法(DDCapsNet)。DDCapsNet 模型通过通道注意机制,利用面部表情特征和基于视频的心率特征的融合来预测欺骗分类。为了增强 DDCapsNet 的泛化能力,还进一步引入了有监督的对比学习。我们分别在自收集的数据集(生理辅助视觉欺骗检测数据集,PV3D)和公开的谎言袋(BOL)数据集上对所提出的模型进行了评估。结果表明,DDCapsNet优于单模态系统和其他最先进的(SOTA)方法,其中在PV3D数据集上的ACC达到77.97%,AUC达到78.45%;在BOL数据集上的ACC达到73.19%,AUC达到72.78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
2024 List of Reviewers* New Incoming EIC Editorial Statistical Validity of Neural-Net Benchmarks Energy Efficiency of Kernel and User Space Level VPN Solutions in AIoT Networks Large Pretrained Foundation Model for Key Performance Indicator Multivariate Time Series Anomaly Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1