Large Pretrained Foundation Model for Key Performance Indicator Multivariate Time Series Anomaly Detection

Xu Wang;Qisheng Xu;Kele Xu;Ting Yu;Bo Ding;Dawei Feng;Yong Dou
{"title":"Large Pretrained Foundation Model for Key Performance Indicator Multivariate Time Series Anomaly Detection","authors":"Xu Wang;Qisheng Xu;Kele Xu;Ting Yu;Bo Ding;Dawei Feng;Yong Dou","doi":"10.1109/OJCS.2024.3521217","DOIUrl":null,"url":null,"abstract":"In the realm of Key Performance Indicator (KPI) anomaly detection, deep learning has emerged as a pivotal technology. Yet, the development of effective deep learning models is hindered by several challenges: scarce and complex labeled data, noise interference from data handling, the necessity to capture temporal dependencies in time series KPI data, and the complexity of multivariate data analysis. Despite recent progress in large models that show potential for handling complex, multidimensional tasks, the lack of extensive, high-quality datasets presents a significant barrier for directly training these models in KPI anomaly detection. This scarcity limits the models' ability to learn and generalize effectively within this specific domain. To overcome this, we propose an innovative approach to adapt fully pretrained large models from other domains to KPI anomaly detection, thereby mitigating data constraints and enhancing detection precision. Our approach involves adapting large models to anomaly detection tasks using patch operations and fine-tuning techniques, which significantly enhances the model's temporal dependency capture capabilities. Furthermore, to address the multivariate challenge, we introduce a novel feature extraction method based on channel independence to optimize information processing across multidimensional features. Additionally, we leverage frequency domain information to design a feature enhancement method, further boosting the model's detection accuracy. By integrating these innovative techniques, we have developed a large-scale KPI anomaly detection model named ViTSD. Empirical evidence from experiments on five benchmark datasets and two additional datasets demonstrates ViTSD's superior performance, outperforming existing models across various evaluation metrics.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"176-187"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10811835","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10811835/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of Key Performance Indicator (KPI) anomaly detection, deep learning has emerged as a pivotal technology. Yet, the development of effective deep learning models is hindered by several challenges: scarce and complex labeled data, noise interference from data handling, the necessity to capture temporal dependencies in time series KPI data, and the complexity of multivariate data analysis. Despite recent progress in large models that show potential for handling complex, multidimensional tasks, the lack of extensive, high-quality datasets presents a significant barrier for directly training these models in KPI anomaly detection. This scarcity limits the models' ability to learn and generalize effectively within this specific domain. To overcome this, we propose an innovative approach to adapt fully pretrained large models from other domains to KPI anomaly detection, thereby mitigating data constraints and enhancing detection precision. Our approach involves adapting large models to anomaly detection tasks using patch operations and fine-tuning techniques, which significantly enhances the model's temporal dependency capture capabilities. Furthermore, to address the multivariate challenge, we introduce a novel feature extraction method based on channel independence to optimize information processing across multidimensional features. Additionally, we leverage frequency domain information to design a feature enhancement method, further boosting the model's detection accuracy. By integrating these innovative techniques, we have developed a large-scale KPI anomaly detection model named ViTSD. Empirical evidence from experiments on five benchmark datasets and two additional datasets demonstrates ViTSD's superior performance, outperforming existing models across various evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
New Incoming EIC Editorial Large Pretrained Foundation Model for Key Performance Indicator Multivariate Time Series Anomaly Detection Front Cover IEEE Open Journal of the Computer Society Information for Authors IEEE Open Journal of the Computer Society Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1