Farrel Dzaudan Naufal, Hasna Afifah, Marleni Wirmas, Mohammad Kemal Agusta, Adhitya Gandaryus Saputro, Hadi Teguh Yudistira, Aleksandar Staykov, Kazunari Yoshizawa and Muhammad Haris Mahyuddin
{"title":"Rutile-type metal dioxide (110) surfaces for the cyclic oxidation of methane to methanol†","authors":"Farrel Dzaudan Naufal, Hasna Afifah, Marleni Wirmas, Mohammad Kemal Agusta, Adhitya Gandaryus Saputro, Hadi Teguh Yudistira, Aleksandar Staykov, Kazunari Yoshizawa and Muhammad Haris Mahyuddin","doi":"10.1039/D4MA00827H","DOIUrl":null,"url":null,"abstract":"<p >The direct conversion of methane to methanol has attracted increasing interests, owing to the necessity for an abundant low-carbon source of energy. However, numerous challenges are encountered in attaining a high conversion rate and selectivity using the existing approach and catalysts. One of them is the need for a reaction halt and a reactivation of the catalyst using an oxidant at high temperature, which makes the whole process non-cyclic. In this study, we employ density functional theory calculations to evaluate rutile-type IrO<small><sub>2</sub></small>(110), β-PtO<small><sub>2</sub></small>(110), and β-MnO<small><sub>2</sub></small>(110) surfaces not only for cleaving the H–CH<small><sub>3</sub></small> bond but also for forming methanol. We find that IrO<small><sub>2</sub></small>(110) and β-PtO<small><sub>2</sub></small>(110) thermodynamically and kinetically favor the C–H activation on the bridging μO-atom terminations <em>via</em> a heterolytic pathway. However, the formation of strong Ir–C and Pt–C bonds, which initially help the C–H bond scission, hinders the methanol formation. In the β-MnO<small><sub>2</sub></small>(110) case, in contrast, the Mn–C interaction is quite weak, and the Mn(μ-O)Mn active site is electrophilic, thus allowing the formation of a stable ˙CH<small><sub>3</sub></small> radical intermediate state that becomes the driving force for a low-barrier homolytic C–H bond scission as well as a low-barrier and highly exothermic formation of methanol. This first cycle of methane oxidation results in a reduced β-MnO<small><sub>2</sub></small>(110) surface, where no more μ-O active sites are available for the subsequent cycles of methane activation. Nonetheless, this reduced surface can also oxidize methane to methanol when the H<small><sub>2</sub></small>O<small><sub>2</sub></small> oxidant is inserted in the mid-way reaction and forms new active sites of μ-OH. The second reaction is also highly exothermic although the C–H activation barrier is not as low as that for the fresh stoichiometric surface. This study suggests the β-MnO<small><sub>2</sub></small>(110) surface as a potential catalyst for the cyclic oxidation of methane to methanol using the H<small><sub>2</sub></small>O<small><sub>2</sub></small> oxidant without halting for reactivation.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 22","pages":" 8961-8969"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00827h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00827h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The direct conversion of methane to methanol has attracted increasing interests, owing to the necessity for an abundant low-carbon source of energy. However, numerous challenges are encountered in attaining a high conversion rate and selectivity using the existing approach and catalysts. One of them is the need for a reaction halt and a reactivation of the catalyst using an oxidant at high temperature, which makes the whole process non-cyclic. In this study, we employ density functional theory calculations to evaluate rutile-type IrO2(110), β-PtO2(110), and β-MnO2(110) surfaces not only for cleaving the H–CH3 bond but also for forming methanol. We find that IrO2(110) and β-PtO2(110) thermodynamically and kinetically favor the C–H activation on the bridging μO-atom terminations via a heterolytic pathway. However, the formation of strong Ir–C and Pt–C bonds, which initially help the C–H bond scission, hinders the methanol formation. In the β-MnO2(110) case, in contrast, the Mn–C interaction is quite weak, and the Mn(μ-O)Mn active site is electrophilic, thus allowing the formation of a stable ˙CH3 radical intermediate state that becomes the driving force for a low-barrier homolytic C–H bond scission as well as a low-barrier and highly exothermic formation of methanol. This first cycle of methane oxidation results in a reduced β-MnO2(110) surface, where no more μ-O active sites are available for the subsequent cycles of methane activation. Nonetheless, this reduced surface can also oxidize methane to methanol when the H2O2 oxidant is inserted in the mid-way reaction and forms new active sites of μ-OH. The second reaction is also highly exothermic although the C–H activation barrier is not as low as that for the fresh stoichiometric surface. This study suggests the β-MnO2(110) surface as a potential catalyst for the cyclic oxidation of methane to methanol using the H2O2 oxidant without halting for reactivation.