Carbon nanotube/polyvinylidene fluoride flexible composite material with low percolation threshold and adjustable negative permittivity

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2024-11-11 DOI:10.1007/s42114-024-01049-4
Zuxiang Mu, Yinuo Sun, Zhaocun Shen, Gemeng Liang, Jinshuo Zou, Peitao Xie
{"title":"Carbon nanotube/polyvinylidene fluoride flexible composite material with low percolation threshold and adjustable negative permittivity","authors":"Zuxiang Mu,&nbsp;Yinuo Sun,&nbsp;Zhaocun Shen,&nbsp;Gemeng Liang,&nbsp;Jinshuo Zou,&nbsp;Peitao Xie","doi":"10.1007/s42114-024-01049-4","DOIUrl":null,"url":null,"abstract":"<div><p>In the interdisciplinary fields of materials science, electromagnetics, and optics, the negative dielectric constant, as a unique physical property, is gradually attracting widespread attention from the academic and industrial communities. Materials with negative dielectric constant impose strict requirements on the value and flexibility of the negative dielectric constant in today’s diverse development. In this study, a flexible carbon nanotube (CNTs)/polyvinylidene fluoride (PVDF) composite film with a low percolation threshold of negative dielectric constant was prepared using a casting method, with a percolation threshold of only 9 wt%. By varying the CNTs content, the intensity of both positive and negative dielectric constant responses can be tuned. The research revealed that the conduction mechanism involves both hopping conduction and metal-like conduction. Notably, at the CNTs content of 11 wt%, a negative dielectric constant was observed across the entire frequency range, showing a Drude-Lorentz-type dispersion. The composite materials with lower CNTs content exhibited dielectric loss primarily at low frequencies, while those with higher CNTs content showed dielectric loss across the full frequency range. This work demonstrates a cost-effective and straightforward approach for controlling negative dielectric constants, which holds promise for applications in electronic devices and electromagnetic shielding.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01049-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

In the interdisciplinary fields of materials science, electromagnetics, and optics, the negative dielectric constant, as a unique physical property, is gradually attracting widespread attention from the academic and industrial communities. Materials with negative dielectric constant impose strict requirements on the value and flexibility of the negative dielectric constant in today’s diverse development. In this study, a flexible carbon nanotube (CNTs)/polyvinylidene fluoride (PVDF) composite film with a low percolation threshold of negative dielectric constant was prepared using a casting method, with a percolation threshold of only 9 wt%. By varying the CNTs content, the intensity of both positive and negative dielectric constant responses can be tuned. The research revealed that the conduction mechanism involves both hopping conduction and metal-like conduction. Notably, at the CNTs content of 11 wt%, a negative dielectric constant was observed across the entire frequency range, showing a Drude-Lorentz-type dispersion. The composite materials with lower CNTs content exhibited dielectric loss primarily at low frequencies, while those with higher CNTs content showed dielectric loss across the full frequency range. This work demonstrates a cost-effective and straightforward approach for controlling negative dielectric constants, which holds promise for applications in electronic devices and electromagnetic shielding.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有低渗阈值和可调负介电常数的碳纳米管/聚偏氟乙烯柔性复合材料
在材料科学、电磁学和光学等交叉学科领域,负介电常数作为一种独特的物理特性,正逐渐引起学术界和工业界的广泛关注。在多元化发展的今天,负介电常数材料对负介电常数的数值和柔性提出了严格的要求。本研究采用浇铸法制备了一种负介电常数渗流阈值较低的柔性碳纳米管(CNTs)/聚偏氟乙烯(PVDF)复合薄膜,其渗流阈值仅为 9 wt%。通过改变 CNTs 的含量,可以调整正介电常数和负介电常数响应的强度。研究发现,其传导机制包括跳跃传导和类金属传导。值得注意的是,当 CNTs 含量为 11 wt% 时,在整个频率范围内都观察到负介电常数,呈现出 Drude-Lorentz 型色散。碳纳米管含量较低的复合材料主要在低频出现介电损耗,而碳纳米管含量较高的复合材料则在整个频率范围内出现介电损耗。这项工作展示了一种控制负介电常数的经济高效且简单直接的方法,有望应用于电子设备和电磁屏蔽领域。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
Photocatalytic degradation of Toluene by three-dimensional monolithic Titanium Dioxide / Cuprous Oxide foams with Z-schemed Heterojunction Development and characterization of zein/gum Arabic nanocomposites incorporated edible films for improving strawberry preservation Dynamically interactive nanoparticles in three-dimensional microbeads for enhanced sensitivity, stability, and filtration in colorimetric sensing Efficient charge separation in Z-scheme heterojunctions induced by chemical bonding-enhanced internal electric field for promoting photocatalytic conversion of corn stover to C1/C2 gases Multifunctional PVA/PNIPAM conductive hydrogel sensors enabled human-machine interaction intelligent rehabilitation training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1