{"title":"Sensor fusion of robotic total station and inertial navigation system for 6DoF tracking applications","authors":"Tomas Thalmann, Hans Neuner","doi":"10.1007/s12518-024-00593-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel approach for sensor fusion of robotic total station (RTS) and inertial navigation system (INS) to enable 6-degree-of-freedom (6DoF) pose estimation. Tight coupling of a spherical measurement model for RTS is developed, providing advantages over the traditional cartesian 3D-position measurement model, including supporting INS solution when distance measurements are unavailable and performing outlier detection in spherical observation space. Simulation studies demonstrate that replacing Global Navigation Satellite Systems (GNSS) with RTS for fusion with INS is beneficial in any environment (given line-of-sight (LOS) availability), even under ideal GNSS conditions. Furthermore, investigations on measurement models and failure identification over the entire range of RTS measurements reveal that the spherical model is advantageous over the cartesian model in certain regions. The developed methods are validated in a practical application for tilt compensation of an RTS pole, indicating a base 2D-RMSE of 3.8 mm for almost static and almost vertical poles, increasing with tilt and velocity.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12518-024-00593-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00593-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel approach for sensor fusion of robotic total station (RTS) and inertial navigation system (INS) to enable 6-degree-of-freedom (6DoF) pose estimation. Tight coupling of a spherical measurement model for RTS is developed, providing advantages over the traditional cartesian 3D-position measurement model, including supporting INS solution when distance measurements are unavailable and performing outlier detection in spherical observation space. Simulation studies demonstrate that replacing Global Navigation Satellite Systems (GNSS) with RTS for fusion with INS is beneficial in any environment (given line-of-sight (LOS) availability), even under ideal GNSS conditions. Furthermore, investigations on measurement models and failure identification over the entire range of RTS measurements reveal that the spherical model is advantageous over the cartesian model in certain regions. The developed methods are validated in a practical application for tilt compensation of an RTS pole, indicating a base 2D-RMSE of 3.8 mm for almost static and almost vertical poles, increasing with tilt and velocity.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements