Novel pyrrole based triazole moiety as therapeutic hybrid: synthesis, characterization and anti-Alzheimer potential with molecular mechanism of protein ligand profile
Shoaib Khan, Tayyiaba Iqbal, Muhammad Bilal Khan, Rafaqat Hussain, Yousaf Khan, Hany W. Darwish
{"title":"Novel pyrrole based triazole moiety as therapeutic hybrid: synthesis, characterization and anti-Alzheimer potential with molecular mechanism of protein ligand profile","authors":"Shoaib Khan, Tayyiaba Iqbal, Muhammad Bilal Khan, Rafaqat Hussain, Yousaf Khan, Hany W. Darwish","doi":"10.1186/s13065-024-01340-x","DOIUrl":null,"url":null,"abstract":"<div><p>As a springboard to explore novel potent inhibitors of cholinesterase enzymes (AChE and BChE) responsible for causing Alzheimer disorder, the current study was conducted to synthesize pyrrole derived triazole based Schiff base scaffolds by facile synthetic route. These compounds were validated by <sup>1</sup>HNMR, <sup>13</sup>CNMR and HREI-MS. All these scaffolds (1–16) were examined for their inhibitory activity against AChE and BChE in contrast to Donepezil (<b>10.20 ± 0.10 and 10.80 ± 0.20 µM</b>) and Allanzanthone (<b>12.40 ± 0.10 and 13.10 ± 0.10 µM</b>). All pyrrole derived triazole based Schiff base scaffolds (1–16) showed varied range of inhibitory potentials against acetylcholinesterase and butyrylcholinesterase enzymes with lowest inhibition concentration values ranging from <b>5.10 ± 0.40–27.10 ± 0.10 µM</b> (for AChE) and <b>5.60 ± 0.30–28.40 ± 0.30 µM</b> (for BChE). SAR analysis of these derivatives revealed analog 7 as lead molecule against targeted enzyme, while analog 6 and 11 were ranked as second and third most potent scaffolds. Binding affinity and selectivity of potent molecules against targeted enzymes were examined by molecular docking and obtained results showed that potent molecule have versatile significant binding interactions with stated enzymes. Furthermore, safety profiles of potent analogues were predicted via ADMET protocols.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01340-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01340-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a springboard to explore novel potent inhibitors of cholinesterase enzymes (AChE and BChE) responsible for causing Alzheimer disorder, the current study was conducted to synthesize pyrrole derived triazole based Schiff base scaffolds by facile synthetic route. These compounds were validated by 1HNMR, 13CNMR and HREI-MS. All these scaffolds (1–16) were examined for their inhibitory activity against AChE and BChE in contrast to Donepezil (10.20 ± 0.10 and 10.80 ± 0.20 µM) and Allanzanthone (12.40 ± 0.10 and 13.10 ± 0.10 µM). All pyrrole derived triazole based Schiff base scaffolds (1–16) showed varied range of inhibitory potentials against acetylcholinesterase and butyrylcholinesterase enzymes with lowest inhibition concentration values ranging from 5.10 ± 0.40–27.10 ± 0.10 µM (for AChE) and 5.60 ± 0.30–28.40 ± 0.30 µM (for BChE). SAR analysis of these derivatives revealed analog 7 as lead molecule against targeted enzyme, while analog 6 and 11 were ranked as second and third most potent scaffolds. Binding affinity and selectivity of potent molecules against targeted enzymes were examined by molecular docking and obtained results showed that potent molecule have versatile significant binding interactions with stated enzymes. Furthermore, safety profiles of potent analogues were predicted via ADMET protocols.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.