Spectrophotometric and computational characterization of charge transfer complex of selumetinib with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and its utilization in developing an innovative green and high throughput microwell assay for analysis of bulk form and pharmaceutical formulation.
Sarah Alrubia, Wafa A AlShehri, Awwad A Radwan, Nourah Z Alzoman, Ibrahim A Darwish
{"title":"Spectrophotometric and computational characterization of charge transfer complex of selumetinib with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and its utilization in developing an innovative green and high throughput microwell assay for analysis of bulk form and pharmaceutical formulation.","authors":"Sarah Alrubia, Wafa A AlShehri, Awwad A Radwan, Nourah Z Alzoman, Ibrahim A Darwish","doi":"10.1186/s13065-024-01353-6","DOIUrl":null,"url":null,"abstract":"<p><p>For paediatric patients suffering from neurofibromatosis, Selumetinib (SEL) is the only approved drug. Here an original ecofriendly and high pace method is introduced using 96- microwell spectrophotometric assay (MW-SPA) to measure SEL content in bulk and commercial pharmaceutical formulation (Koselugo<sup>®</sup> capsules). This assay was relied on in-microwell formation of a coloured charge transfer complex (CTC) upon interaction of SEL with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The complex was fully characterized by spectrophotometric and computational studies. The CTC exhibited an absorbance maximum (λ<sub>max</sub>) at 440 nm. The ease of reaction occurrence, complex stability and its high absorptivity were proved by measuring its association constant (0.63 × 10<sup>2</sup> L/ mol), standard free energy change (-10.31 KJ/mol), molar absorptivity (ε) (3.78 × 10<sup>3</sup> L/mol/cm), and the SEL: DDQ stoichiometric ratio (1:1). Establishments of the optimum values of the applied conditions in 96-well assay plate were refined regarding DDQ concentration, reaction time, temperature, and solvents. Validation of the assay was according to the ICH guidelines. The assay was linear in SEL' concentrations ranged from 10 to 200 µg/well, with limits of detection and quantitation of 4.1 and 12.5 µg/well, respectively. Then, the assay was efficaciously adapted to accurately and precisely determine SEL content in bulk form and Koselugo<sup>®</sup> capsules. The assay environmental safety was documented by three different comprehensive metric tools. Additionally, assessment of the assay's rate demonstrated its high throughput, enabling the processing of large number of samples in pharmaceutical quality control laboratories. The successful development of this assay provides a valuable fast and green analytical tool for ensuring the quality control of SEL's bulk form and capsules.</p>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":"27"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s13065-024-01353-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For paediatric patients suffering from neurofibromatosis, Selumetinib (SEL) is the only approved drug. Here an original ecofriendly and high pace method is introduced using 96- microwell spectrophotometric assay (MW-SPA) to measure SEL content in bulk and commercial pharmaceutical formulation (Koselugo® capsules). This assay was relied on in-microwell formation of a coloured charge transfer complex (CTC) upon interaction of SEL with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The complex was fully characterized by spectrophotometric and computational studies. The CTC exhibited an absorbance maximum (λmax) at 440 nm. The ease of reaction occurrence, complex stability and its high absorptivity were proved by measuring its association constant (0.63 × 102 L/ mol), standard free energy change (-10.31 KJ/mol), molar absorptivity (ε) (3.78 × 103 L/mol/cm), and the SEL: DDQ stoichiometric ratio (1:1). Establishments of the optimum values of the applied conditions in 96-well assay plate were refined regarding DDQ concentration, reaction time, temperature, and solvents. Validation of the assay was according to the ICH guidelines. The assay was linear in SEL' concentrations ranged from 10 to 200 µg/well, with limits of detection and quantitation of 4.1 and 12.5 µg/well, respectively. Then, the assay was efficaciously adapted to accurately and precisely determine SEL content in bulk form and Koselugo® capsules. The assay environmental safety was documented by three different comprehensive metric tools. Additionally, assessment of the assay's rate demonstrated its high throughput, enabling the processing of large number of samples in pharmaceutical quality control laboratories. The successful development of this assay provides a valuable fast and green analytical tool for ensuring the quality control of SEL's bulk form and capsules.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.