Construction of granular aggregates with different porosity, shape, and size distributions

IF 2.4 3区 工程技术 Granular Matter Pub Date : 2024-11-09 DOI:10.1007/s10035-024-01477-5
Emmanuel N. Millán, M. Belén Planes, Eduardo M. Bringa, M. Gabriela Parisi
{"title":"Construction of granular aggregates with different porosity, shape, and size distributions","authors":"Emmanuel N. Millán,&nbsp;M. Belén Planes,&nbsp;Eduardo M. Bringa,&nbsp;M. Gabriela Parisi","doi":"10.1007/s10035-024-01477-5","DOIUrl":null,"url":null,"abstract":"<p>Granular matter is characterized by a collection of grains, where the collective behavior relies on interactions among all constituent particles, generally including both cohesive and dissipative interactions. Understanding and predicting granular behavior is pivotal for both basic science and technological applications, ranging from astrophysics to geology, cereal storage, and cosmetics development. The structure of these aggregates varies depending on the environment but often involves a highly porous configuration. In this study, we introduce our AGregate GENeration Tool (AGGENT) specifically designed for constructing granular aggregates with varying levels of porosity, shapes, and grain sizes. The software facilitates aggregate generation using JKR or DMT cohesive models with a finite grain overlap, enabling the achievement of highly homogeneous aggregates. The behavior of porosity of the generated samples near surfaces is also discussed. These generated samples can subsequently be utilized for performing various simulations, allowing for further analysis of granular behavior under different conditions of interest, including transport, mechanical and thermal properties, etc.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01477-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Granular matter is characterized by a collection of grains, where the collective behavior relies on interactions among all constituent particles, generally including both cohesive and dissipative interactions. Understanding and predicting granular behavior is pivotal for both basic science and technological applications, ranging from astrophysics to geology, cereal storage, and cosmetics development. The structure of these aggregates varies depending on the environment but often involves a highly porous configuration. In this study, we introduce our AGregate GENeration Tool (AGGENT) specifically designed for constructing granular aggregates with varying levels of porosity, shapes, and grain sizes. The software facilitates aggregate generation using JKR or DMT cohesive models with a finite grain overlap, enabling the achievement of highly homogeneous aggregates. The behavior of porosity of the generated samples near surfaces is also discussed. These generated samples can subsequently be utilized for performing various simulations, allowing for further analysis of granular behavior under different conditions of interest, including transport, mechanical and thermal properties, etc.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制造具有不同孔隙率、形状和粒度分布的颗粒集料
粒状物质的特点是颗粒集合,其集体行为依赖于所有组成颗粒之间的相互作用,通常包括内聚和耗散相互作用。从天体物理学到地质学、谷物储存和化妆品开发,了解和预测颗粒行为对于基础科学和技术应用都至关重要。这些聚合体的结构因环境而异,但通常具有高度多孔性。在本研究中,我们介绍了 AGregate GENeration Tool (AGGENT),它专门用于构建具有不同孔隙度、形状和粒度的粒状聚集体。该软件便于使用 JKR 或 DMT 内聚模型生成具有有限晶粒重叠的聚集体,从而实现高度均匀的聚集体。此外,还讨论了生成的样品在表面附近的孔隙率行为。这些生成的样品随后可用于执行各种模拟,进一步分析颗粒在不同相关条件下的行为,包括传输、机械和热特性等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
期刊最新文献
Thermal conductivity and shrinkage characteristics of bentonite-fly ash and bentonite-sand backfill material Experimental studies on fluctuation properties of dust, turbulence and electric field during floating dust weather in Lanzhou Prediction of liquid bridge rupture between two plates combining artificial neural network with grey wolf optimization algorithm Construction of granular aggregates with different porosity, shape, and size distributions Macroscopic effects of intraparticle fracture, grain topology and shape on vehicle dynamics and mobility over gravel road beds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1