Estimating Information Theoretic Measures via Multidimensional Gaussianization

Valero Laparra;Juan Emmanuel Johnson;Gustau Camps-Valls;Raúl Santos-Rodríguez;Jesús Malo
{"title":"Estimating Information Theoretic Measures via Multidimensional Gaussianization","authors":"Valero Laparra;Juan Emmanuel Johnson;Gustau Camps-Valls;Raúl Santos-Rodríguez;Jesús Malo","doi":"10.1109/TPAMI.2024.3495827","DOIUrl":null,"url":null,"abstract":"Information theory is an outstanding framework for measuring uncertainty, dependence, and relevance in data and systems. It has several desirable properties for real-world applications: naturally deals with multivariate data, can handle heterogeneous data, and the measures can be interpreted. However, it has not been adopted by a wider audience because obtaining information from multidimensional data is a challenging problem due to the curse of dimensionality. We propose an indirect way of estimating information based on a multivariate iterative Gaussianization transform. The proposed method has a multivariate-to-univariate property: it reduces the \n<italic>challenging</i>\n estimation of multivariate measures to a composition of \n<italic>marginal</i>\n operations applied in each iteration of the Gaussianization. Therefore, the convergence of the resulting estimates depends on the convergence of well-understood univariate entropy estimates, and the global error linearly depends on the number of times the marginal estimator is invoked. We introduce Gaussianization-based estimates for Total Correlation, Entropy, Mutual Information, and Kullback-Leibler Divergence. Results on artificial data show that our approach is superior to previous estimators, particularly in high-dimensional scenarios. We also illustrate the method's performance in different fields to obtain interesting insights. We make the tools and datasets publicly available to provide a test bed for analyzing future methodologies.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 2","pages":"1293-1308"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750401/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Information theory is an outstanding framework for measuring uncertainty, dependence, and relevance in data and systems. It has several desirable properties for real-world applications: naturally deals with multivariate data, can handle heterogeneous data, and the measures can be interpreted. However, it has not been adopted by a wider audience because obtaining information from multidimensional data is a challenging problem due to the curse of dimensionality. We propose an indirect way of estimating information based on a multivariate iterative Gaussianization transform. The proposed method has a multivariate-to-univariate property: it reduces the challenging estimation of multivariate measures to a composition of marginal operations applied in each iteration of the Gaussianization. Therefore, the convergence of the resulting estimates depends on the convergence of well-understood univariate entropy estimates, and the global error linearly depends on the number of times the marginal estimator is invoked. We introduce Gaussianization-based estimates for Total Correlation, Entropy, Mutual Information, and Kullback-Leibler Divergence. Results on artificial data show that our approach is superior to previous estimators, particularly in high-dimensional scenarios. We also illustrate the method's performance in different fields to obtain interesting insights. We make the tools and datasets publicly available to provide a test bed for analyzing future methodologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多维高斯化估算信息论度量值
信息论是衡量数据和系统中的不确定性、依赖性和相关性的杰出框架。对于现实世界的应用程序,它具有几个理想的属性:自然地处理多变量数据,可以处理异构数据,并且可以解释度量。然而,它并没有被更广泛的受众所采用,因为由于维度的诅咒,从多维数据中获取信息是一个具有挑战性的问题。提出了一种基于多元迭代高斯化变换的间接信息估计方法。所提出的方法具有多变量到单变量的性质:它将多变量度量的挑战性估计减少到每次高斯化迭代中应用的边际操作的组合。因此,结果估计的收敛性取决于我们很好地理解的单变量熵估计的收敛性,而全局误差线性地取决于调用边际估计器的次数。我们引入了基于高斯化的总相关、熵、互信息和Kullback-Leibler散度估计。人工数据的结果表明,我们的方法优于以前的估计方法,特别是在高维场景下。我们还举例说明了该方法在不同领域的表现,以获得有趣的见解。我们公开这些工具和数据集,为分析未来的方法提供一个测试平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FSD V2: Improving Fully Sparse 3D Object Detection With Virtual Voxels Online Learning Under a Separable Stochastic Approximation Framework Event-Enhanced Snapshot Compressive Videography at 10K FPS Fast and Functional Structured Data Generators Rooted in Out-of-Equilibrium Physics Estimating Information Theoretic Measures via Multidimensional Gaussianization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1