{"title":"Tracking the Facet Transformation of CeO2 by 17O Solid-State Nuclear Magnetic Resonance","authors":"Yujie Wen, Wenjing Zhang, Juan Wen, Fang Wang, Xiaokang Ke, Junchao Chen, Luming Peng","doi":"10.1021/acs.jpclett.4c02615","DOIUrl":null,"url":null,"abstract":"CeO<sub>2</sub> nanomaterials expose various crystal facets with distinct surface geometry, resulting in different surface reactivities and material behaviors that ultimately determine their performances and suitability for a wide range of applications. Here, we apply <sup>17</sup>O solid-state nuclear magnetic resonance (NMR) to follow the facet transformation of CeO<sub>2</sub> at increased temperatures, observing a transition from (100) to (110) and finally to the more stable (111), based on the characteristic NMR shifts associated with the unique surface structure of each facet. In addition, we explore the effects of Pt ions on the conversion of different facets, which are found to promote the formation of the thermally stable (111) facet. Furthermore, <sup>17</sup>O solid-state NMR provides a semiquantitative method for measuring the fractions of exposed facets. This work offers new insights and a more comprehensive understanding of crystal facet structures, and the new approach can be readily extended to study the facets of other oxide-based materials.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"215 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02615","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
CeO2 nanomaterials expose various crystal facets with distinct surface geometry, resulting in different surface reactivities and material behaviors that ultimately determine their performances and suitability for a wide range of applications. Here, we apply 17O solid-state nuclear magnetic resonance (NMR) to follow the facet transformation of CeO2 at increased temperatures, observing a transition from (100) to (110) and finally to the more stable (111), based on the characteristic NMR shifts associated with the unique surface structure of each facet. In addition, we explore the effects of Pt ions on the conversion of different facets, which are found to promote the formation of the thermally stable (111) facet. Furthermore, 17O solid-state NMR provides a semiquantitative method for measuring the fractions of exposed facets. This work offers new insights and a more comprehensive understanding of crystal facet structures, and the new approach can be readily extended to study the facets of other oxide-based materials.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.