Opposing roles for AMPK in regulating distinct mitophagy pathways

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Cell Pub Date : 2024-11-11 DOI:10.1016/j.molcel.2024.10.025
Marianna Longo, Aniketh Bishnu, Pierpaolo Risiglione, Lambert Montava-Garriga, Joyceline Cuenco, Kei Sakamoto, Carol MacKintosh, Ian G. Ganley
{"title":"Opposing roles for AMPK in regulating distinct mitophagy pathways","authors":"Marianna Longo, Aniketh Bishnu, Pierpaolo Risiglione, Lambert Montava-Garriga, Joyceline Cuenco, Kei Sakamoto, Carol MacKintosh, Ian G. Ganley","doi":"10.1016/j.molcel.2024.10.025","DOIUrl":null,"url":null,"abstract":"Mitophagy degrades damaged mitochondria, but we show here that it can also target functional mitochondria. This latter scenario occurs during programmed mitophagy and involves the mitophagy receptors NIX and BNIP3. Although AMP-activated protein kinase (AMPK), the energy-sensing protein kinase, can influence damaged-induced mitophagy, its role in programmed mitophagy is unclear. We found that AMPK directly inhibits NIX-dependent mitophagy by triggering 14-3-3-mediated sequestration of ULK1, via ULK1 phosphorylation at two sites: Ser556 and an additional identified site, Ser694. By contrast, AMPK activation increases Parkin phosphorylation and enhances the rate of depolarization-induced mitophagy, independently of ULK1. We show that this happens both in cultured cells and tissues <em>in vivo</em>, using the <em>mito</em>-QC mouse model. Our work unveils a mechanism whereby AMPK activation downregulates mitophagy of functional mitochondria but enhances that of dysfunctional/damaged ones.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"71 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.10.025","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitophagy degrades damaged mitochondria, but we show here that it can also target functional mitochondria. This latter scenario occurs during programmed mitophagy and involves the mitophagy receptors NIX and BNIP3. Although AMP-activated protein kinase (AMPK), the energy-sensing protein kinase, can influence damaged-induced mitophagy, its role in programmed mitophagy is unclear. We found that AMPK directly inhibits NIX-dependent mitophagy by triggering 14-3-3-mediated sequestration of ULK1, via ULK1 phosphorylation at two sites: Ser556 and an additional identified site, Ser694. By contrast, AMPK activation increases Parkin phosphorylation and enhances the rate of depolarization-induced mitophagy, independently of ULK1. We show that this happens both in cultured cells and tissues in vivo, using the mito-QC mouse model. Our work unveils a mechanism whereby AMPK activation downregulates mitophagy of functional mitochondria but enhances that of dysfunctional/damaged ones.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AMPK 在调节不同的有丝分裂途径中发挥着相反的作用
有丝分裂能降解受损的线粒体,但我们在此表明,它也能以功能线粒体为目标。后一种情况发生在程序性有丝分裂过程中,涉及有丝分裂受体 NIX 和 BNIP3。虽然能量感应蛋白激酶 AMP 激活蛋白激酶(AMPK)能影响受损诱导的有丝分裂,但它在程序性有丝分裂中的作用还不清楚。我们发现,AMPK通过ULK1在两个位点(Ser556和另一个已确定的位点Ser694)的磷酸化,触发14-3-3介导的ULK1固着,从而直接抑制NIX依赖的有丝分裂。相比之下,AMPK 的激活会增加 Parkin 的磷酸化并提高去极化诱导的有丝分裂率,而与 ULK1 无关。我们利用有丝分裂-QC 小鼠模型表明,这种情况既发生在培养细胞中,也发生在体内组织中。我们的研究揭示了一种机制,即 AMPK 激活会下调功能线粒体的有丝分裂,但会增强功能障碍/受损线粒体的有丝分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
期刊最新文献
AMPK: Balancing mitochondrial quality and quantity through opposite regulation of mitophagy pathways A major step forward toward high-resolution nanopore sequencing of full-length proteins m6A sites in the coding region trigger translation-dependent mRNA decay Flipping a switch on BRD4: How to control the do-it-all Lost in translation: Threonine dictates aggregation of CAT tails
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1