Upcycling CO2 and bio-derived furan into degradable plastic monomer via coupling of photocatalysis and thermocatalysis

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-11-12 DOI:10.1016/j.cej.2024.157519
Qi Liu, Chengyang Li, Tingting Wang, Peng Sun, Jia Wang, Yongjie Xi, Guang Gao, Mengnan Nie, Li Huang, Guofeng Wang, Zelun Zhao, Zhiwei Huang, Fuwei Li
{"title":"Upcycling CO2 and bio-derived furan into degradable plastic monomer via coupling of photocatalysis and thermocatalysis","authors":"Qi Liu, Chengyang Li, Tingting Wang, Peng Sun, Jia Wang, Yongjie Xi, Guang Gao, Mengnan Nie, Li Huang, Guofeng Wang, Zelun Zhao, Zhiwei Huang, Fuwei Li","doi":"10.1016/j.cej.2024.157519","DOIUrl":null,"url":null,"abstract":"Coupling of CO<sub>2</sub> with biomass-derived molecules into degradable plastic monomer provides a promising strategy to address the increasing problems of carbon recycle and carbon neutrality. Herein, we develop a sustainable route to produce 6-hydroxycaproate (6-HMC) by coupling photocatalytic carboxylation of biomass-derived furfuryl alcohol with CO<sub>2</sub> to 2-furanacetic acid (FA), and the thermocatalytic hydrogenolysis of methyl 2-tetrahydrofuranyl acetate (MTFA) derived from FA, wherein Pd/CeO<sub>2</sub> exhibit the highest productivity of 6-HMC (505 mmol<sub>6-HMC</sub> mmol<sup>-1</sup><sub>metal</sub> h<sup>−1</sup>), much higher than its counterparts of precious- and non-precious-metal catalysts. Moreover, Pd/CeO<sub>2</sub> also presents good stability for 6 recycles without remarkable decrease in 6-HMC yield. Systematic experiments and computational studies suggest that higher concentration of oxygen vacancies and strong metal-support interactions account for enhanced catalytic performance of Pd/CeO<sub>2</sub>. The work employs CO<sub>2</sub> and lignocellulosic-derived platform molecule as feedstocks to produce valuable degradable plastic monomer, providing a promising route to access pure-CO<sub>2</sub> originated high-carbon oxygen-containing compounds.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"42 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157519","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coupling of CO2 with biomass-derived molecules into degradable plastic monomer provides a promising strategy to address the increasing problems of carbon recycle and carbon neutrality. Herein, we develop a sustainable route to produce 6-hydroxycaproate (6-HMC) by coupling photocatalytic carboxylation of biomass-derived furfuryl alcohol with CO2 to 2-furanacetic acid (FA), and the thermocatalytic hydrogenolysis of methyl 2-tetrahydrofuranyl acetate (MTFA) derived from FA, wherein Pd/CeO2 exhibit the highest productivity of 6-HMC (505 mmol6-HMC mmol-1metal h−1), much higher than its counterparts of precious- and non-precious-metal catalysts. Moreover, Pd/CeO2 also presents good stability for 6 recycles without remarkable decrease in 6-HMC yield. Systematic experiments and computational studies suggest that higher concentration of oxygen vacancies and strong metal-support interactions account for enhanced catalytic performance of Pd/CeO2. The work employs CO2 and lignocellulosic-derived platform molecule as feedstocks to produce valuable degradable plastic monomer, providing a promising route to access pure-CO2 originated high-carbon oxygen-containing compounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过光催化和热催化耦合将二氧化碳和生物呋喃转化为可降解的塑料单体
将二氧化碳与生物质衍生分子耦合成可降解塑料单体,为解决日益严重的碳循环和碳中和问题提供了一种前景广阔的策略。在此,我们开发了一条可持续的路线,通过将生物质衍生的糠醇与二氧化碳进行光催化羧化反应生成 2-呋喃乙酸(FA),从而生产 6-羟基己酸酯(6-HMC)、其中 Pd/CeO2 的 6-HMC 产率最高(505 mmol6-HMC mmol-1metal h-1),远高于贵金属和非贵金属催化剂。此外,Pd/CeO2 还具有良好的稳定性,可循环使用 6 次,而 6-HMC 收率不会显著下降。系统实验和计算研究表明,较高浓度的氧空位和较强的金属-支撑相互作用是 Pd/CeO2 催化性能增强的原因。该研究以二氧化碳和木质纤维素衍生的平台分子为原料,生产出有价值的可降解塑料单体,为获得源自纯二氧化碳的高碳含氧化合物提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Issue Editorial Masthead Issue Publication Information Emerging Frontiers in Conformational Exploration of Disordered Proteins: Integrating Autoencoder and Molecular Simulations. Pathological Mutations D169G and P112H Electrostatically Aggravate the Amyloidogenicity of the Functional Domain of TDP-43. Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1