{"title":"Mechanism of negative μ-opioid receptor modulation by sodium ions","authors":"Neil J. Thomson, Ulrich Zachariae","doi":"10.1016/j.str.2024.10.023","DOIUrl":null,"url":null,"abstract":"Negative allosteric modulation of G-protein coupled receptors (GPCRs) by Na<sup>+</sup> ions was first described in the 1970s for opioid receptors (ORs) and has subsequently been detected for most class A GPCRs. In high-resolution structures of inactive-state class A GPCRs, a Na<sup>+</sup> ion binds to a conserved pocket near residue D2.50, whereas active-state structures of GPCRs are incompatible with Na<sup>+</sup> binding. Correspondingly, Na<sup>+</sup> diminishes agonist affinity, stabilizes the receptors in the inactive state, and reduces basal signaling. We applied a mutual-information based analysis to <em>μ</em>s-timescale biomolecular simulations of the <em>μ</em>-opioid receptor (<em>μ</em>-OR). Our results reveal that Na<sup>+</sup> binding is coupled to a water wire linking the Na<sup>+</sup> binding site with the agonist binding pocket and to rearrangements in polar networks propagating conformational changes to the agonist and G-protein binding sites. These findings provide a new mechanistic link between the presence of the ion, altered agonist affinity, receptor deactivation, and lowered basal signaling levels.","PeriodicalId":22168,"journal":{"name":"Structure","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.10.023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Negative allosteric modulation of G-protein coupled receptors (GPCRs) by Na+ ions was first described in the 1970s for opioid receptors (ORs) and has subsequently been detected for most class A GPCRs. In high-resolution structures of inactive-state class A GPCRs, a Na+ ion binds to a conserved pocket near residue D2.50, whereas active-state structures of GPCRs are incompatible with Na+ binding. Correspondingly, Na+ diminishes agonist affinity, stabilizes the receptors in the inactive state, and reduces basal signaling. We applied a mutual-information based analysis to μs-timescale biomolecular simulations of the μ-opioid receptor (μ-OR). Our results reveal that Na+ binding is coupled to a water wire linking the Na+ binding site with the agonist binding pocket and to rearrangements in polar networks propagating conformational changes to the agonist and G-protein binding sites. These findings provide a new mechanistic link between the presence of the ion, altered agonist affinity, receptor deactivation, and lowered basal signaling levels.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.