Matthew J. McLeod, Sarah A.E. Barwell, Todd Holyoak, Robert E. Thorne
{"title":"A structural perspective on the temperature dependent activity of enzymes","authors":"Matthew J. McLeod, Sarah A.E. Barwell, Todd Holyoak, Robert E. Thorne","doi":"10.1016/j.str.2025.02.013","DOIUrl":null,"url":null,"abstract":"Enzyme activity varies with temperature. Unlike small-molecule catalysts, the structural ensembles of enzymes can change substantially with temperature, but it is unclear how this modulates temperature dependent activity. Here, multi-temperature X-ray crystallography was used to record structural changes from ˗20°C to 40°C for a mesophilic enzyme in complex with inhibitors mimicking substrate-, intermediate-, and product-bound states, representative of major complexes on the reaction coordinate. Inhibitors, substrates and active site loops increasingly populated catalytically competent conformations as temperature increased. These changes occurred even in temperature ranges where kinetic measurements showed roughly linear Arrhenius/Eyring behavior, where parameters characterizing the system are assumed to be temperature independent. Simple analysis shows that linear Arrhenius/Eyring behavior can still be observed when the underlying activation energy/enthalpy values vary with temperature. Our results indicate a critical role for temperature dependent atomic-resolution structural data in interpreting temperature dependent kinetic data from enzymatic systems.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"56 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.02.013","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzyme activity varies with temperature. Unlike small-molecule catalysts, the structural ensembles of enzymes can change substantially with temperature, but it is unclear how this modulates temperature dependent activity. Here, multi-temperature X-ray crystallography was used to record structural changes from ˗20°C to 40°C for a mesophilic enzyme in complex with inhibitors mimicking substrate-, intermediate-, and product-bound states, representative of major complexes on the reaction coordinate. Inhibitors, substrates and active site loops increasingly populated catalytically competent conformations as temperature increased. These changes occurred even in temperature ranges where kinetic measurements showed roughly linear Arrhenius/Eyring behavior, where parameters characterizing the system are assumed to be temperature independent. Simple analysis shows that linear Arrhenius/Eyring behavior can still be observed when the underlying activation energy/enthalpy values vary with temperature. Our results indicate a critical role for temperature dependent atomic-resolution structural data in interpreting temperature dependent kinetic data from enzymatic systems.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.