Yanke Shi , Lijin Huang , Yu Bai , Lei Ouyang , Huiyu Zhao , Xinquan Wang , Qin Shuai
{"title":"Facile synthesis of Metal-Organic Framework/Chitosan cryogel as a robust Scavenger for Diclofenac sodium","authors":"Yanke Shi , Lijin Huang , Yu Bai , Lei Ouyang , Huiyu Zhao , Xinquan Wang , Qin Shuai","doi":"10.1016/j.cej.2024.157593","DOIUrl":null,"url":null,"abstract":"<div><div>Diclofenac sodium (DS), a commonly detected contaminant in aquatic environments, poses a a significant risk to both the ecological balance and the safety of aquatic products. Therefore, efficient removal of DS from water is ergently needed but remains a major challenge. In this study, an environmentally friendly Fe-based metal-organic framework/chitosan (NH<sub>2</sub>-MIL-53(Fe)/CS) cryogel was prepared through a Schiff base condensation reaction under mild conditions. Taking advantage of the catalytic role of the MOF in accelerating the reaction between CS and 1,3,5-triformylphloroglucinol, NH<sub>2</sub>-MIL-53(Fe) powders were incorporated into the polymeric networks within 30 s. Owing to the rich binding sites, the resulting NH<sub>2</sub>-MIL-53(Fe)/CS cryogel demonstrated remarkable efficacy in eliminating DS from water. The adsorption process reached equilibrium within 120 min with a maximum adsorption capacity of 728.6 mg g<sup>-1</sup>. A comprehensive mechanistic investigation revealed that the exceptional adsorption capability of the NH<sub>2</sub>-MIL-53(Fe)/CS cryogel for DS was attributed to the synergistic effect of multiple interactions, including favorable hydrophilicity, electrostatic forces, π-π stacking, hydrogen bonding, and coordination interaction. Thus, this study provides a straightforward and rapid synthesis route for MOF/CS cryogel, offering a promising adsorbent that combines exceptional adsorption performance with ease of separation. The resulting MOF/CS cryogel holds great potential for treating DS-contaminated wastewater.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"501 ","pages":"Article 157593"},"PeriodicalIF":13.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894724090843","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diclofenac sodium (DS), a commonly detected contaminant in aquatic environments, poses a a significant risk to both the ecological balance and the safety of aquatic products. Therefore, efficient removal of DS from water is ergently needed but remains a major challenge. In this study, an environmentally friendly Fe-based metal-organic framework/chitosan (NH2-MIL-53(Fe)/CS) cryogel was prepared through a Schiff base condensation reaction under mild conditions. Taking advantage of the catalytic role of the MOF in accelerating the reaction between CS and 1,3,5-triformylphloroglucinol, NH2-MIL-53(Fe) powders were incorporated into the polymeric networks within 30 s. Owing to the rich binding sites, the resulting NH2-MIL-53(Fe)/CS cryogel demonstrated remarkable efficacy in eliminating DS from water. The adsorption process reached equilibrium within 120 min with a maximum adsorption capacity of 728.6 mg g-1. A comprehensive mechanistic investigation revealed that the exceptional adsorption capability of the NH2-MIL-53(Fe)/CS cryogel for DS was attributed to the synergistic effect of multiple interactions, including favorable hydrophilicity, electrostatic forces, π-π stacking, hydrogen bonding, and coordination interaction. Thus, this study provides a straightforward and rapid synthesis route for MOF/CS cryogel, offering a promising adsorbent that combines exceptional adsorption performance with ease of separation. The resulting MOF/CS cryogel holds great potential for treating DS-contaminated wastewater.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.