Freya Maria Rosemarie Ziegler, Vivien Rosenthal, Jose G Vallarino, Franziska Genzel, Sarah Spettmann, Łukasz Seliga, Sylwia Keller-Przybyłkowicz, Lucas Munnes, Anita Sønsteby, Sonia Osorio, Björn Usadel
{"title":"A full genome assembly reveals drought stress effects on gene expression and metabolite profiles in blackcurrant (Ribes nigrum L.)","authors":"Freya Maria Rosemarie Ziegler, Vivien Rosenthal, Jose G Vallarino, Franziska Genzel, Sarah Spettmann, Łukasz Seliga, Sylwia Keller-Przybyłkowicz, Lucas Munnes, Anita Sønsteby, Sonia Osorio, Björn Usadel","doi":"10.1093/hr/uhae313","DOIUrl":null,"url":null,"abstract":"Blackcurrant (Ribes nigrum L., family Grossulariaceae) is a perennial shrub that is widely cultivated for its edible berries. These are rich in antioxidants, vitamin C and anthocyanins, making them a valuable ingredient in the food and beverage industry. However, prolonged periods of drought during the fruiting season lead to drought stress, which has serious ecological and agricultural implications, inhibiting blackcurrant growth and reducing yields. To facilitate the analysis of underlying molecular processes, we present the first high-quality chromosome-scale and partially haplotype-resolved assembly of the blackcurrant genome (cv. Rosenthals Langtraubige), also the first in the family Grossulariaceae. We used this genomic reference to analyze the transcriptomic response of blackcurrant leaves and roots to drought stress, revealing differentially expressed genes with diverse functions, including those encoding the transcription factors bZIP, bHLH, MYB and WRKY, and tyrosine kinase-like kinases such as PERK and DUF26. Gene expression was correlated with the abundance of primary metabolites, revealing 14 with significant differences between stressed leaves and controls indicating a metabolic response to drought stress. Amino acids such as proline were more abundant under stress conditions, whereas organic acids were depleted. The genomic and transcriptomic data from this study can be used to develop more robust blackcurrant cultivars that thrive under drought stress conditions.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"158 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae313","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Blackcurrant (Ribes nigrum L., family Grossulariaceae) is a perennial shrub that is widely cultivated for its edible berries. These are rich in antioxidants, vitamin C and anthocyanins, making them a valuable ingredient in the food and beverage industry. However, prolonged periods of drought during the fruiting season lead to drought stress, which has serious ecological and agricultural implications, inhibiting blackcurrant growth and reducing yields. To facilitate the analysis of underlying molecular processes, we present the first high-quality chromosome-scale and partially haplotype-resolved assembly of the blackcurrant genome (cv. Rosenthals Langtraubige), also the first in the family Grossulariaceae. We used this genomic reference to analyze the transcriptomic response of blackcurrant leaves and roots to drought stress, revealing differentially expressed genes with diverse functions, including those encoding the transcription factors bZIP, bHLH, MYB and WRKY, and tyrosine kinase-like kinases such as PERK and DUF26. Gene expression was correlated with the abundance of primary metabolites, revealing 14 with significant differences between stressed leaves and controls indicating a metabolic response to drought stress. Amino acids such as proline were more abundant under stress conditions, whereas organic acids were depleted. The genomic and transcriptomic data from this study can be used to develop more robust blackcurrant cultivars that thrive under drought stress conditions.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.