{"title":"Food Web Bioaccumulation Model for Ecological Risk Assessment of Emerging Organic Pollutants in Marine Ecosystems: Principles, Advances and Challenges","authors":"Chuan-Sheng Sun, Rui Hou, Qian-Yi Huang, Zhi-Hua Li, Xiang-Rong Xu","doi":"10.1016/j.envpol.2024.125292","DOIUrl":null,"url":null,"abstract":"The bioaccumulation and trophic transfer of pollutants in marine ecosystem members determine their ultimate ecological risks. Food web bioaccumulation models are widely used in scientific and regulatory programs to assess the bioaccumulation and ecological risks of pollutants at the ecosystem scale. The food web models are mainly established through concentration- and fugacity-based modeling approaches and include some chemical, food web-related, physiological and environmental factors. The models applied in the “forward approach” predict bioaccumulation and conduct internal exposure level-based ecological risk assessment (IEL-ERA), whereas those in the “reverse approach” are used to back-calculate the IEL-based predicted no-effect concentrations (PNECs) or environmental criteria. However, some challenges still exist in the application of food web model integrated risk assessment, including the lack of standardized/generalized frameworks, the lack of chemical- and species-specific toxicokinetic data and internal exposure (or tissue residue)-based toxicity data, and the lack of uncertainty-control methods in model estimation and parameterization. There are urgent requirements to improve models, integrate methods and update study designs in the assessment and prediction of “system-scale risks” of marine emerging organic pollutants.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"4 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125292","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The bioaccumulation and trophic transfer of pollutants in marine ecosystem members determine their ultimate ecological risks. Food web bioaccumulation models are widely used in scientific and regulatory programs to assess the bioaccumulation and ecological risks of pollutants at the ecosystem scale. The food web models are mainly established through concentration- and fugacity-based modeling approaches and include some chemical, food web-related, physiological and environmental factors. The models applied in the “forward approach” predict bioaccumulation and conduct internal exposure level-based ecological risk assessment (IEL-ERA), whereas those in the “reverse approach” are used to back-calculate the IEL-based predicted no-effect concentrations (PNECs) or environmental criteria. However, some challenges still exist in the application of food web model integrated risk assessment, including the lack of standardized/generalized frameworks, the lack of chemical- and species-specific toxicokinetic data and internal exposure (or tissue residue)-based toxicity data, and the lack of uncertainty-control methods in model estimation and parameterization. There are urgent requirements to improve models, integrate methods and update study designs in the assessment and prediction of “system-scale risks” of marine emerging organic pollutants.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.