Katherine J. Mossburg, Sarah J. Shepherd, Diego Barragan, Nathaniel H. O, Emily K. Berkow, Portia S. N. Maidment, Derick N. Rosario Berrios, Jessica C. Hsu, Michael J. Siedlik, Sagar Yadavali, Michael J. Mitchell, David Issadore, David P. Cormode
{"title":"Towards the clinical translation of a silver sulfide nanoparticle contrast agent: large scale production with a highly parallelized microfluidic chip","authors":"Katherine J. Mossburg, Sarah J. Shepherd, Diego Barragan, Nathaniel H. O, Emily K. Berkow, Portia S. N. Maidment, Derick N. Rosario Berrios, Jessica C. Hsu, Michael J. Siedlik, Sagar Yadavali, Michael J. Mitchell, David Issadore, David P. Cormode","doi":"10.1007/s00259-024-06967-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Ultrasmall silver sulfide nanoparticles (Ag<sub>2</sub>S-NP) have been identified as promising contrast agents for a number of modalities and in particular for dual-energy mammography. These Ag<sub>2</sub>S-NP have demonstrated marked advantages over clinically available agents with the ability to generate higher contrast with high biocompatibility. However, current synthesis methods for inorganic nanoparticles are low-throughput and highly time-intensive, limiting the possibility of large animal studies or eventual clinical use of this potential imaging agent.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We herein report the use of a scalable silicon microfluidic system (SSMS) for the large-scale synthesis of Ag<sub>2</sub>S-NP. Ag<sub>2</sub>S-NP produced using this system were compared to bulk synthesis and a commercially available microfluidic device through characterization, contrast generation, in vivo imaging, and clearance profiles.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Using SSMS chips with 1 channel, 10 parallelized channels, and 256 parallelized channels, we determined that the Ag<sub>2</sub>S-NP produced were of similar quality as measured by core size, concentration, UV–visible spectrometry, and in vitro contrast generation. Moreover, by combining parallelized chips with increasing reagent concentration, we were able to increase output by an overall factor of 5,100. We also found that <i>in vivo</i> imaging contrast generation was consistent across synthesis methods and confirmed renal clearance of the ultrasmall nanoparticles. Finally, we found best-in-class clearance of the Ag<sub>2</sub>S-NP occurred within 24 h.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>These studies have identified a promising method for the large-scale production of Ag<sub>2</sub>S-NP, paving the way for eventual clinical translation.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-024-06967-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Ultrasmall silver sulfide nanoparticles (Ag2S-NP) have been identified as promising contrast agents for a number of modalities and in particular for dual-energy mammography. These Ag2S-NP have demonstrated marked advantages over clinically available agents with the ability to generate higher contrast with high biocompatibility. However, current synthesis methods for inorganic nanoparticles are low-throughput and highly time-intensive, limiting the possibility of large animal studies or eventual clinical use of this potential imaging agent.
Methods
We herein report the use of a scalable silicon microfluidic system (SSMS) for the large-scale synthesis of Ag2S-NP. Ag2S-NP produced using this system were compared to bulk synthesis and a commercially available microfluidic device through characterization, contrast generation, in vivo imaging, and clearance profiles.
Results
Using SSMS chips with 1 channel, 10 parallelized channels, and 256 parallelized channels, we determined that the Ag2S-NP produced were of similar quality as measured by core size, concentration, UV–visible spectrometry, and in vitro contrast generation. Moreover, by combining parallelized chips with increasing reagent concentration, we were able to increase output by an overall factor of 5,100. We also found that in vivo imaging contrast generation was consistent across synthesis methods and confirmed renal clearance of the ultrasmall nanoparticles. Finally, we found best-in-class clearance of the Ag2S-NP occurred within 24 h.
Conclusions
These studies have identified a promising method for the large-scale production of Ag2S-NP, paving the way for eventual clinical translation.
期刊介绍:
The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.