Advancing the thermodynamic modeling of multicomponent phases in hydrogen-para-equilibrium

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-11-12 DOI:10.1016/j.actamat.2024.120529
Peter Hannappel, Felix Heubner, Mateusz Balcerzak, Thomas Weißgärber
{"title":"Advancing the thermodynamic modeling of multicomponent phases in hydrogen-para-equilibrium","authors":"Peter Hannappel, Felix Heubner, Mateusz Balcerzak, Thomas Weißgärber","doi":"10.1016/j.actamat.2024.120529","DOIUrl":null,"url":null,"abstract":"We present an advanced approach for the thermodynamic modeling of metal hydrides within the Calculation of Phase Diagrams (CALPHAD) framework. As the traditional CALPHAD method requires significant and time-consuming manual input, often introducing biases into the assessment process, we present a novel solution to automate this. The core of our approach is the development of an open-source, Python-based computational tool designed to calculate para-equilibrium states in hydrogen-multicomponent phases. This tool facilitates a semi-automatic pathway to enhance the CALPHAD evaluation procedure, significantly reducing manual input. We validated our approach by rapidly assessing the (Ce,La)Ni<sub>5</sub>–H system, a representative material system with significant implications for metal hydride-based hydrogen applications. Our method confirms existing data and reveals new insights into this system’s sorption properties and phase behavior. Using our Python-based tool to optimize parameter sets and calculate Pressure-Composition-Isotherms (PCI), we demonstrate the feasibility of predicting temperature-dependent plateau pressures and hydrogen capacities of multicomponent metal hydrides. This work holds significant potential for future applications in designing hydrogen storage materials, predicting their properties, and extending the methodology to other metal hydride systems.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120529","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an advanced approach for the thermodynamic modeling of metal hydrides within the Calculation of Phase Diagrams (CALPHAD) framework. As the traditional CALPHAD method requires significant and time-consuming manual input, often introducing biases into the assessment process, we present a novel solution to automate this. The core of our approach is the development of an open-source, Python-based computational tool designed to calculate para-equilibrium states in hydrogen-multicomponent phases. This tool facilitates a semi-automatic pathway to enhance the CALPHAD evaluation procedure, significantly reducing manual input. We validated our approach by rapidly assessing the (Ce,La)Ni5–H system, a representative material system with significant implications for metal hydride-based hydrogen applications. Our method confirms existing data and reveals new insights into this system’s sorption properties and phase behavior. Using our Python-based tool to optimize parameter sets and calculate Pressure-Composition-Isotherms (PCI), we demonstrate the feasibility of predicting temperature-dependent plateau pressures and hydrogen capacities of multicomponent metal hydrides. This work holds significant potential for future applications in designing hydrogen storage materials, predicting their properties, and extending the methodology to other metal hydride systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推进氢-准平衡多组分相的热力学建模工作
我们介绍了在相图计算(CALPHAD)框架内建立金属氢化物热力学模型的先进方法。由于传统的 CALPHAD 方法需要大量耗时的人工输入,往往会在评估过程中引入偏差,因此我们提出了一种新颖的自动化解决方案。我们方法的核心是开发一种基于 Python 的开源计算工具,旨在计算氢气多组分相的副平衡态。该工具有助于通过半自动化途径增强 CALPHAD 评估程序,大大减少了人工输入。我们通过快速评估(Ce,La)Ni5-H 系统验证了我们的方法,该系统是对基于金属氢化物的氢应用具有重要影响的代表性材料系统。我们的方法证实了现有数据,并揭示了该系统吸附特性和相行为的新见解。利用我们基于 Python- 的工具来优化参数集和计算压力-成分-等温线 (PCI),我们证明了预测多组分金属氢化物随温度变化的高原压力和氢容量的可行性。这项工作在设计储氢材料、预测其性质以及将该方法扩展到其他金属氢化物系统方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Advancing the thermodynamic modeling of multicomponent phases in hydrogen-para-equilibrium Mixed atomic-scale electronic configuration as a strategy to avoid cocatalyst utilization in photocatalysis Architected materials informatics: Construction and application to cellular-structured heat sink optimization Non-Arrhenius grain growth in SrTiO3: Impact on grain boundary conductivity and segregation Cryogenic deformation strengthening mechanisms in FeMnSiNiAl high-entropy alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1